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The Rogaland Anorthosite Province comprises three major massif-type anorthosites, two smaller-sized
anorthositic-leuconoritic bodies, as well as a large layered, dominantly noritic intrusion. A mangero-
noritic intrusion is found in the northeastern part of the province and major acidic intrusions are located
to the far southeast. The Rogaland Anorthosite Province was emplaced into the Sveconorwegian
orogenic belt of southwest Scandinavia at 93113 Ma. Emplacement took place at around 5.5 kbar
producing a thermal aureole with osumilite and pigeonite isograds and evidence for dehydration melting.
The early history of the hosting terrane most likely dates back to Gothian or late Pre-Gothian times and
contain evidence for numerous episodes of folding and deformation. Contact metamorphism was
superimposed on a crustal volume, which had been exposed to Sveconorwegian granulite facies
metamorphism between 1024 and 970 Ma.

Deformation patterns, mineral compositional considerations and geothermobarometry imply that the
Rogaland anorthosites crystallized along a P-T trajectory starting at 10-13 kbar, and were emplaced in a
mushy state. The possibility that primitive jotunites may be parental to the andesine anorthosites have
recently been substantiated, and experimental data show that these jotunites most likely formed by
melting of gabbronoritic sources in the lower crust. The 230 km? Bjerkreim-Sokndal Layered Intrusion
also derive from jotunitic parents, and jotunites form a continuous liquid line of descent filling the gap
between basic and acidic rocks in Rogaland. This intrusion contains a >7000 m thick layered cumulate
sequence, consisting of virtually all the rock types belonging to the anorthosite kindred. The intrusion
morphology, layering and compositional variation result from a variety of magma chamber processes,
which are discussed in detail. The Rogaland Anorthosite Province also hosts numerous Fe-Ti oxide
deposits of variable size, grade and composition. The oxide deposits have been divided into three basic
types based on their oxide-phosphate association; type 1: ilmenite-only, type 2: ilmenite + magnetite and
type 3: ilmenite + magnetite + apatite.

This excursion guide provides detailed itineraries to most parts of the Rogaland Anorthosite Province,
with in-depth descriptions of more than 40 key localities, The itineraries cover the various anorthosites,
the Bjerkreim-Sokndal Layered Intrusion, jotunitic and acidic intrusions, the hosting metamorphic
complex, as well as Fe-Ti oxide and sulfide deposits.
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Foreword
(by J.C. Duchesne)

In Memoriam Paul MICHOT (1902-1999).
A life-long scrutinizer of Rogaland rocks

Paul Michot began studying the Egersund anorthositic Province in 1937. He defined the
various massifs, provided the first geological map, and elaborated a sophisticated model for
the geological and petrological evolution of the Rogaland igneous masses and metamorphic
envelope, which is a masterpiece of complexity, consistency and strictness. In 1960, he
published a guidebook (Michot 1960) and later, his major ideas on anorthosites, formerly
developed in many papers, were condensed in cooperation with his son Jean in the Plattsburg
symposium (Michot & Michot 1969). Under his impulse, many petrological and geochemical
studies were initiated in the massifs he had defined and in the southern part of the Province,
where he had not worked. New data - which mean new constraints, but also new questions -
were added to the anorthosite problem. Basically however Michot’s map still remains
essentially unaltered.

In 1984, a NATO Advanced Science Institute was held in Moi on the topic “The deep
Proterozoic crust in the North Atlantic Provinces”. This was an opportunity to visit the
Rogaland anorthosites and to bring up to date Michot’s guidebook by focusing on some
aspects which were re-investigated more thoroughly (the Egersund-Ogna massif, the jotunite
dyke system, the Bjerkreim-Sokndal mineralogy and geochemistry) or were unknown to P.
Michot (the Hidra massif). This guidebook was published as part of “The Geology of
Southernmost Norway: an excursion guide” by Maijer & Padget (1987). After 1984, new data
were acquired, especially on the Bjerkreim-Sokndal massif, by groups from various
universities: Arhus (led by J.R. Wilson), Bergen (B. Robbins) and Liége (J.C. Duchesne). In
1992, a meeting was held in Rogaland on “Magma chambers and processes in anorthosite
formation” as part of the IGCP programme 290 on “Anorthosite and related rocks”. It was a
good opportunity to revise and update the preceding guidebook. The present revised and
enlarged third version of this guidebook is written for the workshop on “Ilmenite Deposits in
the Rogaland Anorthosite Province” held at Moi, Norway, July 8-12, 2001, under the ESF’s
GEODE-project “The Fennoscandian Shield Precambrian Province”.
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In nearly two decades, a significant volume of new data have been acquired on the various
geological units of the province, and some of the ideas have been deeply modified. The basic
structure of the guidebook is however preserved: thematic papers summarise the state of the
art on the various units, and itineraries show salient localities, most of them with easy access.
Two themes have been added: the first one is devoted to the acidic rocks of the Bjerkreim-
Sokndal intrusion and its south-eastern Apophysis as well as to the jotunitic dyke system. The
second addition deals with the Fe-Ti deposits and particularly with the world-class Tellnes
ilmenite deposit, their genesis and their evolution. The introductory chapter, initially written
by Jean Michot and myself, has been revised by myself only.

I wish to acknowledge all contributors to this guide (J. Richard Wilson, Brian Robins,
Daniel Demaiffe, Robert Maquil, Edith Wilmart) and particularly newcomers: Jacqueline
Vander Auwera and Olivier Bolle from the University of Liege (Belgium), Henrik Schiellerup
from the Norwegian University of Science and Technology and NGU (Trondheim, Norway),
Bernard Bingen from NGU (Trondheim, Norway), and Hervé Diot from the University of La
Rochelle (France). I am also very grateful to Are Korneliussen, Project Leader of the GEODE
sub-project “Ilmenite Deposits in the Rogaland Anorthosite Province”.

Jean-Clair Duchesne
(February 2001)

*kk
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Part 1

Photo 0.1. In the Ana-Sira anorthosite massif
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Chapter 1

THE ROGALAND ANORTHOSITE PROVINCE: AN INTRODUCTION
(by J.C. Duchesne and B. Bingen)

The Sveconorwegian orogenic belt

The Rogaland Igneous Province is situated at the southwestern end of the exposed
Sveconorwegian orogenic belt in Rogaland — Vest Agder. The Sveconorwegian belt of
Fennoscandia is generally correlated with the Grenvillian belt of Laurentia. Both belts formed
during a polyphase orogenic event between 1.25 and 0.90 Ga, at the transition between the
Mesoproterozoic and Neoproterozoic (Berthelsen 1980; Falkum 1985; Rivers et al. 1989;
Gorbatschev & Bogdanova 1993; Davidson 1995; Rivers & Corrigan 2000). They are
generally depicted as the product of the collision between an unknown plate and the margin of
the Fennoscandian and Laurentian shields respectively.

The Sveconorwegian orogen (Fig. 1.1) is situated to the west of the 1.9-1.8 Ga
Svecofennian domain and the 1.85-1.65 Ga Transcandinavian Igneous Belt. It is made up of a
number of Palaeo- to Mesoproterozoic lithotectonic domains separated by major shear zones,
and cut obliquely by the Palacozoic Oslo rift (Berthelsen 1980; Gorbatschev & Bogdanova
1993; Ahill & Gower 1997). No consensus exists today regarding the nomenclature of the
lithotectonic domains; in the following text, crustal domains are divided into major domains
called segments or terranes and smaller domains called sectors. The easternmost domain of
the orogen, the Eastern Segment, is parautochthonous, and mainly consists of reworked
granitoids of the Transcandinavian Igneous Belt foreland (Christoffel et al. 1999; S6derlund et
al. 1999). The other domains, to the west of the Mylonite Zone, are Sveconorwegian
allochthons (Park et al. 1991; Stephens et al. 1996; Mdéller 1998; Andersson et al. submitted).
Three major terranes, bounded by orogen-parallel shear zones, can be defined (Fig. 1.1.).
These are, from east to west, the Idefjorden terrane (Ahill et al. 1998), the Telemark —
Bamble terrane and the Rogaland — Hardangervidda terrane. In this subdivision, the
Idefjorden terrane extends on both sides of the Oslo rift (Bingen et al. in press) and the
Telemark — Bamble terrane includes the Telemark, Bamble and Kongsberg sectors, although
the link between the Telemark sector and the Bamble and Kongsberg sectors is a matter of
debate. To the west of the Mandal — Ustaoset Line, the Hardangervidda and the Rogaland —
Vest Agder sectors are considered as a parts of one single terrane.

In the Sveconorwegian orogen, Sveconorwegian magmatic rocks increase in volume
westwards. 1.3—-1.2 Ga pre- to early-Sveconorwegian magmatic rocks of variable type are
distributed all over the orogen. The volume of this magmatism is poorly assessed in S
Norway. It comprises, among others, 1.20 Ga syenite plutons along the Sveconorwegian
Frontal Deformation Zone (Jarl 1992), 1.20 Ga low-K diorite — tonalite plutons in the Bamble
sector (Knudsen & Andersen 1999), the 1.28 Ga Iveland—Gautestad metagabbroic complex of
low- to medium-K tholeiitic to calc-alkaline signature in the Telemark sector (Pedersen &
Konnerup-Madsen 2000) and 1.27-1.25 Ga acid volcanic rocks (Breive Group) of undefined
geochemical signature in the Hardangervidda sector (Sigmond 1978; Bingen unpublished
data). 1.19—1.15 Ga magmatic rocks form a well-defined magmatic suite in the western part of
the orogen in the Telemark — Bamble and Rogaland — Hardangervidda terranes. This suite
includes (deformed) charnockite to granite plutons, the volcanic rocks of the Bandak Group
and minor (meta)gabbro bodies (Dons 1960; Dahlgren et al. 1990; Kullerud & Machado
1991; Heaman & Smalley 1994; Nordgulen et al. 1997; Zhou et al. 1995 ; Bingen & van
Breemen 1998a). Granitoids in this suite display an A-type geochemical signature. As
opposed to the Grenvillian orogen, no coeval anorthosite massifs are reported in the
Sveconorwegian orogen. A short-lived suite of high-K calc-alkaline porphyritic granodiorite
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plutons (Feda suite) intruded at 1.05 Ga in (and only in) the westernmost Rogaland—
Hardangervidda terrane (Bingen et al. 1993; Bingen & van Breemen 1998a). Voluminous
1.00-0.90 Ga late- to post-tectonic plutonism occurs in the Idefjorden terrane and westwards
(compilation in Andersson et al. 1996). The largest of these complexes are the 0.93-0.92 Ga
Fl14, Iddefjorden and Bohus granite plutons in the Idefjorden terrane (Eliasson & Schoberg
1991; Nordgulen et al. 1997) and the anorthosite massifs and related rocks in Rogaland—Vest
Agder that are the subject of this guidebook. The emplacement of the Rogaland anorthosite
complex is estimated at 931 + 3 Ma (Schérer et al. 1996), and represents a surprisingly short
magmatic event (<10 m.y.).

Sveconorwegian metamorphism varies in intensity from greenschist to granulite facies,
and is not coeval in the different sectors. The Eastern Segment displays an amphibolite facies
domain and a high-pressure granulite facies domain in the southern part with local occurrence
of eclogite-facies rocks (Johansson et al. 1991; Moller 1998; 1999). The timing of high-grade
metamorphism including eclogite-facies overprint is well constrained between 0.98 and 0.96
Ga (Connelly et al. 1996; Soderlund 1996; Andersson et al. 1999; Soderlund et al. 1999;
Johansson et al. in press). In the Idefjorden terrane, the intensity and timing of
Sveconorwegian metamorphism is not well constrained. It is older than 1.04 Ga (Romer &
Smeds 1996). In the centre of the Telemark sector, metamorphism is generally of low grade
and deposition of the impure clastic sediments of the Bandak and Heddal Groups (cover to the
volcanic rocks) took place in an intraorogenic basin between 1.12 and 1.05 Ga and later
(Bingen et al. 1999; de Haas et al. 1999). In the coastal regions of the Bamble sector, early-
Sveconorwegian medium-pressure (c. 7.5 kbar) granulite facies metamorphism (Touret 1971;
Lamb et al. 1986; Nijland & Maijer 1993; Knudsen 1996) is bracketed between 1.15 and 1.10
Ga (Kullerud & Machado 1991; Knudsen et al. 1997; Cosca et al. 1998). In the Rogaland—
Vest Agder sector three phases of Sveconorwegian metamorphism are reported (Tobi et al.
1985, Maijer 1987). The timing of the main phase of regional metamorphism (M1, see
hereafter) is estimated at 1.02—0.97 Ga (Bingen and van Breemen 1998b).

All major shear zones in the Sveconorwegian orogen were active during the
Sveconorwegian orogeny, but possibly formed initially during older events (Sigmond 1985;
Heaman & Smalley 1994; Page et al. 1996). To the east of the Oslo rift, major shear zones
display a sinistral shear component (Hageskov 1985; Park et al. 1991; Stephens et al. 1996).
From the age of deformed intrusive rocks, ductile deformation in amphibolite facies
conditions is constrained to be younger than 1.13 Ga along the Kristiansand-Posrgrunn shear
zone (separating the Bamble and Telemark sectors, Fig. 1.1) and younger that 1.04 Ga along
the Mandal-Ustaoset Line (separating the Rogaland — Hardangervidda from the Telemark —
Bamble terrane). Direct zircon dating of amphibolite facies metamorphism and associated
ductile deformation yield ages of 0.98-0.97 Ga along the Mylonite zone (separating the
Eastern Segment from the Idefjorden terrane) (Larson et al. 1999; Andersson et al. submitted)
and 1.01 Ga along the Amot — Vardefjell shear zone (separating the Idefjorden and Telemark
terranes) (Bingen, unpublished data).
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Fig. 1.1. Sketch map of SW Scandinavia showing the major lithotectonic domains of the Sveconorwegian
orogen. The largest post-tectonic 0.93—0.92 Ga magmatic complexes are shown.

Understanding of the Sveconorwegian orogenic evolution at continent scale is speculative
today. Compilation of the ages of regional metamorphism indicates that the main orogenic
phase took place between 1.02 and 0.96 Ga, with maximum shortening of the orogen at 0.97
Ga (age of eclogite facies metamorphism in the parautochthonous Eastern Segment). The age
of metamorphism tends to decrease eastwards, suggesting that this phase propagated towards
the foreland. This phase included large (sinistral transpressive ?) displacement of terranes and
thrusting of allochthon terranes on the parautochthonous Eastern Segment, and was followed
by relaxation. The high-K calc-alkaline signature of 1.05 Ga granodiorite plutons (Feda suite
in the west of the orogen) led Bingen et al. (1993) to suggest that a subduction regime
prevailed at 1.05 Ga and thus that the 1.02-0.97 Ga orogenic phase marked the end of
subduction. The existence of a subduction regime is nevertheless not the only possible
interpretation of geochemical data, as melting of a juvenile component of the lower crust in a
distinct geotectonic environment is a possible alternative to generate this type of magmatism
(Roberts & Clemens 1993; Liégeois et al. 1998). So far, no satisfactory geotectonic
interpretation has been proposed for the early-Sveconorwegian 1.19-1.15 Ga magmatism and
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the shortly following 1.15—1.10 Ga high-grade metamorphism preserved in the Bamble sector.
Although the 1.19-1.15 Ga granitoids display an A-type geochemical signature, they cannot
be considered as anorogenic. This early-Sveconorwegian magmatism and subsequent
metamorphism possibly correspond to (1) docking of the allochthonous terranes, some of
which would be exotic to the Fennoscandian shield before colliding, (2) closure of a back arc
basin as represented by the Stora Le Marstrand belt in the Idefjorden terrane, or (3) large scale

stike-slip motion of terranes of Fennoscandian affinity at the margin of the Fennoscandian
shield.

Geological setting in Rogaland — Vest Agder

Following Falkum (1985; 1998), the amphibolite to granulite facies basement complex in the
Rogaland — Vest Agder sector includes three main lithological units (Fig. 1.2): banded gneiss,
granitic “pink” gneiss and augen gneiss (Feda suite). The banded gneisses are strongly
migmatic and consist of alternating mafic and felsic layers ranging in thickness from less than
a centimetre to several metres. Mafic rocks are amphibolite to norite and felsic rocks are
leuco-granitoids. Intercalation of kinzigitic (garnet-cordierite-sillimanite-biotite) gneiss,
metaquartzite, and marble are evidence of a supracrustal origin for at least part of the banded
gneiss units. They have poorly defined Palaeo- to Mesoproterozoic ages (Versteeve 1975;
Menuge 1988). Granitic pink (ortho-) gneiss intruded the banded gneiss and form
monotonous domains. Augen gneiss with large alkali feldspar phenocrysts (cm to dm size)
form elongate bodies parallel to the regional structure. Intrusion of the porphyritic
granodiorite plutons deformed to augen gneiss is estimated at 1050 +2/-8 Ma (Bingen and van
Breemen 1998a). Other major components of the Rogaland — Vest Agder sector are large c.
1.19-1.15 Ga meta-granite to charnockitic plutons of A-type geochemical affinity (Gloppurdi,
Botnevatn and Hidderskog bodies) (Versteeve 1975; Wielens et al. 1980; Zhou et al. 1995), c.
0.98-0.90 Ga post-tectonic granites (Falkum 1966; Wilson et al. 1977; Pasteels et al. 1979)
and the 0.93 Ga anorthosite massifs and related rocks (Schirer et al. 1996).

The Rogaland — Vest Agder sector is limited to the east by the Mandal-Ustaoset Line, a
lithospheric scale deformation zone (Sigmond 1985). In the region of Mandal, the Mandal—
Ustaoset line is made up of a N—S trending amphibolite facies banded gneiss unit bordered to
the west by an elongate augen gneiss body, the 1049 +2/-8 Ma Mandal augen gneiss. Post-
tectonic granites straddle the Mandal-Ustaoset Line (Sigmond 1985; Andersson et al. 1996).
They are especially voluminous directly to the west of the Line. This distribution suggests
that the Mandal-Ustaoset Line channelled emplacement of post-tectonic granitoids. The
Mandal-Ustaoset Line is clearly a Sveconorwegian tectonic zone as deformation affected
1.05 and 1.035 Ga granitoids situated along the zone (Bingen and van Breemen 1998a).
Nevertheless, along the northern part of the Line, evidence of deformation as old as 1.5 Ga is
reported (Sigmond 1985; 1997), which implies that the tectonic zone was possibly active over
a long time interval. Offshore geophysics indicate large offsets of the Moho south of the
Mandal-Ustaoset Line and of the Feda zone (in Fig. 9 of Andersson et al. 1996), which
suggests discontinuities of lithospheric scale. The Feda augen gneiss, which outcrops some 12
km east of the anorthosite massif (Fig. 1.2), might have intruded in a zone of weakness, in a
similar way as the Mandal augen gneiss. Duchesne et al. (1999) have proposed that it could
represent the zone along which the anorthosite bodies were emplaced. These basement rocks
in Rogaland — Vest Agder underwent a long and complex tectonic and metamorphic evolution
that includes several phases of folding and of interaction with plutonic rocks. North of the
anorthosite province, Michot (1956b; 1960) recognized two phases of isoclinal folding with
large recumbent folds (Storefjell nappe), followed by a vertical axial plane folding phase
(Lakksvelefjeld syncline), which he extended in the Bjerkreim-Sokndal synform. North-east
and east of the anorthosite province, Hermans et al. (1975) have identified four deformation
phases and south-east of the province, in the Flekkefjord area, Falkum (1966; 1998) defined
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six folding phases. Detailed correlation between the deformation phases as defined by the
various authors is still unclear, though the two phases of isoclinal folding that have been
identified at regional scale presumably resulted from the same events.

The grade of Sveconorwegian metamorphism increases from E to W and can be
described in a succession of four isograds (Fig. 1.2) (Tobi et al. 1985; Maijer 1987; Bingen et
al. 1990): (1) clinopyroxene-in (Cpx-in) isograd, defined in the Feda augen gneiss suite,
which marks the appearance of Cpx joining the amphibolite facies biotite + amphibole
paragenesis; (2) orthopyroxene-in (Opx-in) in rocks of leucocratic composition; (3) osumilite-
in (Osum-in) in supracrustal gneiss; (4) (inverted) pigeonite-in (Pig-in) in mafic rocks. The
last two isograds wrap around the igneous intrusions. The other two are parallel to the igneous
contact southeast of the complex, but diverge from it in the north.

The isograd pattern results from the superposition of three major metamorphic phases,
M1, M2 and M3 (Tobi et al. 1985; Maijer 1987). To account for some old age measurements,
Priem & Verschure (1982) postulated another older MO phase, but the existence of this phase
has not been substantiated by petrological data. A Caledonian M4 phase, in prehnite-
pumpelliyite to lower greenschist facies, has been documented (Hermans et al. 1975). The
intensity of M4 increases to the north and a green biotite-in isograd can be defined parallel to
the Caledonian front to the north of the anorthosite province (Fig. 1.2). The M2
metamorphism is the most intense one and did erase most of the M1 parageneses. It was not
associated with pervasive deformation (as indicated by the preservation of corona-like
textures and non-oriented mineral assemblages) and most likely corresponds to a thermal
aureole around the igneous intrusions. Geothermobarometric methods provide temperatures
for the M2 phase as high as 800—900 °C in various lithologies, including osumilite + spinel +
orthopyroxene and quartz + spinel parageneses in pelitic protoliths (Jansen et al. 1985;
Wilmart & Duchesne 1987). The pressure conditions of crystallization of the Bjerkreim-
Sokndal intrusion were experimentally determined to be less or equal than 5 kbar (Vander
Auwera & Longhi 1994), providing a good estimate for the pressure of the M2 contact
metamorphism. This estimate is equivalent to the 5.5 kbar determined by thermodymamic
modelling of osumilite-bearing mineral assemblages in the granulite-facies gneisses (Holland
et al 1996) and is narrower than the previously estimated range, extending from 3—4 kbar
(Jansen et al. 1985) to 6-7 kbar (Wilmart & Duchesne 1987), estimated by
geothermobarometric methods in various gneisses and in acidic charnockitic igneous rocks.
Between the Opx-in and the Osum-in isograds, a hornblende + quartz out isograd (not shown
on Fig. 1.2) has been documented (Maijer 1987).
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Fig. 1.2. Geological map of the southern part of the Rogaland — Vest Agder segment (Sigmond 1985). Isograds
Pig-in (= pigeonite in), Osum-in (= osumulilite in) and Green Biot-in (= green biotite) have been plotted after
Tobi et al. (1985), isograd Opx-in (= ortopyroxene in) after Falkum (1982) and isograd Cpx-in (= ortopyroxene
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acidic rocks; 9: Rogaland anorthosite province; 10: Farsund charnokite; 11 Klevan granite; 12: Lyngdal hyperite.
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To the west of this isograd, towards the contact of the anorthosite massif, 1-2 cm-thick
“dehydration rims” of noritic composition are observed whenever amphibolite are in contact
with quartzo-feldspathic rocks, i.e. in the banded gneiss or around mafic inclusions in acidic
igneous rocks. They result from a metasomatic SiO, diffusion mechanism (Vander Auwera
1993). The constant rim thickness suggests static (atectonic) conditions during formation. The
M3 phase, only very locally associated with a late deformation, is a phase of retrograde
metamorphism producing a variety of corona textures, symplectites and exsolutions. A range
of P-T conditions (500—700°C and 3—4 kbar) have been reported (Jansen et al. 1985; Wilmart
& Duchesne 1987). The composition of metamorphic fluids changed from COs-rich fluids
during the M2 phase to CH4 and N, during the M3 phase (Van den Kerkhof et al. 1991).
Relicts of M1 mineral assemblages occur in metapelitic rocks (biotite + garnet + sillimanite),
in mafic rocks (green hornblende + biotite + Cpx) and in rocks with granitic composition
(biotite + green hornblende). Sapphirine locally occurs in Mg-rich compositions (Hermans et
al. 1975; Tobi et al. 1985; Maijer 1987).

The origin of the Opx-in isograd has long been debated. When it was originally
mapped, it was interpreted as a product of the same contact metamorphism that produced the
Osum-in and Pig-in isograds, though it is not strictly parallel with them (Tobi et al. 1985;
Maijer 1987). Tobi and Jansen (cited in Maijer, 1987) were however not completely
convinced by that interpretation because they suspected that granulite facies conditions were
reached during the M1 phase in the western part of the area. For them, the Opx-in isograd is
reflecting the transition from regional amphibolite facies in the east to granulite facies to the
west, and therefore is older than the M2 phase. Later Bingen et al. (1990) mapped the Cpx-in
isograd grossly parallel to the Opx-in isograd and showed that both isograds are cutting across
the well-dated (1050 +2/-8 Ma) Feda augen gneiss suite. The emplacement age of the whole
anorthosite complex was then measured by the U-Pb method on zircon and baddeleyite at 931
+ 3 Ma (Schérer et al. 1996). Recently Bingen & van Breemen (1998b) measured the age of a
prograde breakdown reaction of monazite in the Feda suite, which they correlate with the
Opx-in reaction, at 1024-970 Ma. This supports the hypothesis that the M2 phase and the
Opx-in reaction can be decoupled, that the climax of metamorphism affecting the whole area
is younger than 1050 Ma and that the phase of regional metamorphism M1 reached granulite
facies condition around 1.02-0.97 Ga. A cluster of monazite U-Pb ages in the range 930-925
Ma probably reflects the timing of M2 metamorphism. Titanite sampled at regional scale
provides a well-grouped U-Pb average age of 918 + 2 Ma reflecting regional cooling below
ca. 610 °C (Bingen and van Breemen 1998b).

The intrusive units in the Rogaland anorthosite province

The Rogaland anorthosite province comprises three large massif-type anorthositic bodies
(Egersund, Hiland-Helleren and Ana-Sira), a layered intrusion (Bjerkreim-Sokndal), two
smaller bodies of leuconorite (Hidra and Garsaknatt) and to the south three acidic intrusions:
the Farsund charnockite, the Lyngdal and the Kleivan granites (fig. 1.3). They are emplaced
in an envelope of granulite facies gneisses with which most massifs show broadly concordant
contacts.

The Egersund-Ogna body is made of monotonous anorthositic rocks. It is characterized
by a central part somewhat enriched in aggregates of giant orthopyroxene and plagioclase
crystals and by a marginal zone, leuconoritic and strongly foliated. The contact with the
envelope is generally concordant. The overall structure is that of a mantled dome (Michot
1957b). The petrology of the Egersund-Ogna body is summarized and discussed later in this
guidebook.

The Haland-Helleren body has been divided into two different units by Michot (1961a;
1961b). The Haland massif is made up of folded foliated anorthosite and leuconorite in

19



Rogaland guidebook

various proportions, with granoblastic structure, locally grading into an igneous-like
association between anorthosite and (leuco)-norite. The progressive transition between
metamorphic and igneous textures has been interpreted by P. Michot (1955b) and J. Michot
(1957a) as due to a leuconoritic anatexis of pre-existing anorthosito-noritic gneisses.

The Helleren massif (formerly also called the Amdal-Helleren-R6dland massif) cuts
across the Haland and the Egersund-Ogna massifs. It is dominated by a coarse-grained
anorthosite but also comprises leuconoritic parts and anorthosito-leuconoritic complexes
similar to those described in Egersund-Ogna. It has other similarities with Egersund-Ogna,
namely the presence of giant Al-rich orthopyroxene crystals and of blocky inclusions of
foliated anorthosito-noritic rocks. However, it lacks the continuous foliated inner margin
characteristic of the Egersund-Ogna body. The massif has been studied by Michot (1961a;
1961b) and interpreted as the result of a regional leuconoritic anatexis (basic palingenesis) of
an anorthosito-noritic gneissic basement, similar to the Haland massif. The occurrence of Al-
rich Opx megacrysts however indicates a polybaric evolution (Longhi et al. 1993) and
precludes the formation of melts at the level of emplacement. An alternative explanation is to
consider the anorthositic-noritic gneiss not as an old basement but as the margin of the
intrusion, similar to the margin of the Egersund-Ogna body, and produced by syn-
emplacement deformation. The Haland massif could thus represent the cap of a diapir and the
Helleren body its more central part, capable to cut through its roof.

The Ana-Sira body has many features in common with the Helleren massif and possibly
was emplaced in a similar way, though somewhat earlier in the igneous evolution. A detailed
mapping has been carried out by geologists from Clausthal Technical University. Universiteit
under the leadership of H. Krause (Krause & Pedall 1980). The massif contains two large
ilmenite-ore deposits, the Storgangen vein and the Tellnes ilmenite-norite lens, the latter still
in active production and yielding a substantial amount of the ilmenite world production.
Krause and co-workers have produced detailed studies of the various ore-deposits of the
massif (Krause & Zeino-Mahmalat 1970; Gierth & Krause 1973; Krause & Pape 1975; Knorn
& Krause 1977). The Bjerkreim-Sokndal layered intrusion associates the whole anorthosite-
mangerite suite of rocks and thus remains a key-point in the understanding of the “ anorthosite
problem . Since the 1960 guidebook (Michot 1960), more data were made available by
Michot (1965) and by various authors. They are summarized later in this guidebook. The SW
flank of the intrusion, at the contact with the neighbouring anorthositic Helleren massif is
intruded by the Eia-Rekefjord jotunitic body which is related to an extended dyke-system,
cutting across all massif-type anorthosite bodies and the lower part of the Bjerkreim-Sokndal
intrusion. The Hidra and Garsaknatt leuconoritic bodies, of smaller size, intruded into the
metamorphic envelope at a late stage of the igneous evolution (Michot & Michot 1969;
Demaiffe et al. 1973). Their most typical features are, for the former, the occurrence of a
conspicuous fine-grained jotunitic margin - the sole occurrence in all massifs of a continuous
“chilled margin” -, and for the latter, numerous massive or foliated anorthositic and
leuconoritic inclusions. In contrast with the other massifs, the plagioclase is not granulated
and the subophitic character of the texture, typical of atectonic conditions, is well preserved.
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Fig. 1.3. The Rogaland anorthosite province (after Michot 1960, Michot & Michot 1969, Rietmeijer 1979,
Wilmart 1982, Duchesne et al. 1985a; Krause et al. 1985; Duchesne 1987b; Duchesne 1987a; Wilson et al. 1996;
Bolle 1998). Bs: Beostelen intrusion; Bf: Pegmatite norite of the Blafjell deposit; Hg: Hogstad layered intrusion;
HI: Héland dyke; K: Koldal intrusion; L: Lomland dyke; S: Storgangen deposit; T: Tellnes dyke; T’: Tellnes
deposit; Vb: Varberg dyke; Vt: Vettaland dyke; Vs: Vaersland dyke. Note that the Egersund dolerite dyke swarm
has not been figured.

A mangero-noritic body is located in southwards prolongation of the Mydland lobe of the
Bjerkreim-Sokndal intrusion (Michot & Michot 1969; Demaiffe 1972; Bolle 1996; Bolle et al.
1997). Because of his location, it is called the Apophysis. It is intruding the eastern contact
between the Ana-Sira body and the metamorphic envelope.

The Puntavoll-Lien norito-granitic zone (Michot 1955a) and the septum that separate
the Egersund-Ogna body from the Haland massif and from the Bjerkreim-Sokndal intrusion,
respectively, are of complex origin. Michot (1956a) concluded that a norite intrusive in the
contact zone was transformed into norito-granitic banded gneiss by metasomatic fluids that
leached out the mafic minerals and redeposited them into Fe-Ti oxide bodies (mafic front)
leaving behind an anorthositic residue. The occurrence of garnet-cordierite-sillimanite gneiss
within the norito-granitic banded gneiss - thus indicating a pelitic protolith - and the overall
similarity of these gneiss with banded gneiss formation commonly found in the metamorphic
envelope, however, strongly suggest that the norito-granitic zone of Michot is in fact a septum
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of highly deformed metamorphic supracrustal rocks wedged in between the anorthosite
massifs.

The Farsund charnockite and the Lyngdal and Kleivan granites are fully described in the
Maijer and Padget (1987) guidebook, to which the reader is referred.
A system of Neoproterozoic WNW-ESE dolerite dykes — the so-called Egersund dyke swarm
— with aphanitic chilled borders, intrudes the whole igneous complex and the metamorphic
envelope (Bingen et al. 1998b).

Geophysical data

Geophysical data on the Rogaland anorthositic province have been synthesized by (Smithson
& Ramberg 1979). The Mohorovicic discontinuity is presently about 28 km deep near
Egersund (Sellevoll & Aalstad 1971), and the heat flow through the anorthositic bodies is 0.4
to 0.5 HFU (Swanberg et al. 1974). Gravity measurements have led to an overall confirmation
of the geological interpretation. A positive gravity anomaly, ranging from 10 to 30 mgal, is
centred on the Bjerkreim-Sokndal intrusion, which has been modelled as a syncline
containing 4 km-thick noritic material. A seismic image of the basal portion has been recently
acquired (Deemer & Hurich 1997). No anomaly can be detected under the massif-type
anorthosites, indicating that no complementary mafic material is present beneath the
anorthosite. The Ana-Sira body has been inferred to be 4 km thick, which, combined to the
heat flow measurement, suggests that the crust below is made up of low-heat producing deep-
crustal rocks.

The deep seismic profile ILP-11, has been collected offshore of Rogaland. It has been
interpreted by Andersson et al. (1996). Similarly, the undersea extension of the Rogaland
anorthosite complex has been drawn after aeromagnetic data (Smethurst et al. 1994). The
relationships with the onshore geology are still to be worked out.

Tentative reconstruction of the geological evolution in Rogaland—Vest Agder

In view of the recent age determinations and structural reconstruction, we suggest the
following sequence of tectono-metamorphic and plutonic events in the Rogaland — Vest
Agder sector. We are still in doubt however with the exact relationship between the M1
metamorphism and the two major isoclinal recumbent fold phases (F2 and F3 phases of
Falkum (1998) and D2 and D3 of Hermans et al. (1975) and the two phases of Michot (1956b;
1960). Pervasive deformation on such large scale must have been associated with a (high-
grade) metamorphism event older than the intrusion of the Feda porphyritic granite suite. We
have chosen to push the first isoclinal recumbent fold phase (F2) into Gothian times, before
the emplacement of early-Sveconorwegian charnockitic bodies at c. 1.19—1.15 Ga. The age
constraints for F2, F3 and F4 are nevertheless very poor and, for example, these phases could
as well result from a continuous deformation in a relatively short time interval. The F3 phase
must have started before the intrusion of the porphyritic Feda granodiorite suite and the latter
is folded by the F4 phase. We therefore propose the following sequence of events in the
Rogaland — Vest Agder sector.

Pre-Sveconorwegian and Gothian times (>1.25 Ga)
Extraction of the crustal material from the mantle (island arc material) given by
Nd depleted mantle model ages (Tpy) at 1.5-1.9 Ga (Menuge 1988).

Detrital zircon in metaquartzite of the Faurefjell metasediments clustering around
1.65 Ga (de Haas et al. 1999).
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F1 and possibly F2 folding phases of Falkum (1998) coeval with MO phase of
metamorphism and or plutonism (Versteeve 1975, Pasteels & Michot 1975; Priem
& Verschure 1982).

Intrusion of various granitoids with U-Pb ages between 1.6 and 1.4 Ga (Pasteels
& Michot 1975; Priem & Verschure 1982).

Old inherited components in zircon from Tellnes deposit (1.69 Ga) and Helleren
anorthosite (1.45 Ga) (Schirer et al. 1996).

Sveconorwegian orogeny (1.25 — 0.98 Ga)
Intrusion of A-type granite to charnockite plutons: Gloppurdi and Botnevatn
bodies at 1180 £ 70 Ma (WR Rb-Sr age) (Versteeve 1975; Wielens et al. 1981),
and Hidderskog body at 1159 = 5 Ma (U-Pb zircon age) (Zhou et al. 1995).

Inherited component in zircon from the margin of the Egersund-Ogna body (1.24
Ga) (Schirer et al. 1996).

Beginning of the M1 upper amphibolite facies metamorphism and F2—F3 isoclinal
recumbent folds of Falkum (1998). These episodes probably started before the
intrusion of the Feda porphyritic granodiorite suite at 1050 +2/-8 Ma.

Intrusion of the Feda porphyritic high-K calc-alkaline granodiorite suite at 1051
+2/-8 Ma (U-Pb zircon age)(Bingen & van Breemen 1998a).

Climax of the M1 upper amphibolite (E) facies and granulite (W) facies
metamorphism, separated by an Opx-in isograd at 1024 — 970 Ma (monazite U—
Pb ages) (Bingen & van Breemen 1998b); F4 tight to isoclinal fold phase (Falkum
1998)

Intrusion of the Homme granite at 998 Ma + 14 Ma (WR Rb-Sr age) (Falkum &
Pedersen 1979)

F5 tight to close amphibolite facies deformation
F6 open to gentle (non-penetrative) deformation (Falkum 1998).
End of the regional deformation regime between 998 Ma and 980 Ma.

Post-collisional regime (0.98 - 0.90 Ga)
Intrusion of the Holum granite, which is the first post-orogenic granite situated on
the western side of the Mandal-Ustaoset Line at 980 + 34 Ma (WR Rb-Sr age)
(Wilson et al. 1977).

Intrusion of the massif-type anorthosite bodies and related rocks at 931 + 3 Ma
(U-Pb zircon ages) (Schirer et al. 1996).

M-2 thermal metamorphism at 930-925 Ma (monazite U-Pb ages) (Bingen & van
Breemen 1998b).

Intrusion of the Tellnes ilmenite norite at 920 + 3 Ma (U—PDb zircon age) (Schérer
et al. 1996).

Granitic plutonism straddling the Mandal-Ustaoset line between c. 0.98 and 0.90
Ga, ending with the intrusion of the Bessefjell granite at 904 = 16 Ma (WR Rb—Sr
age) (compilation in Andersson et al. 1996).

Regional cooling through closure temperature for Pb diffusion in titanite (c. 610
°C) at 918 £ 2 Ma (titanite U-Pb ages) (Bingen & van Breemen 1998b) and
cooling through closure temperature for Ar diffusion in hornblende (c. 550 °C) at
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916 +12/-14 Ma (*°Ar/*° Ar ages on amphibole in pyroxene-rich samples) (Bingen
et al. 1998a).

Intrusion of mineralized pegmatites, namely the Rymteland pegmatite at 916 + 6
Ma (U-Pb uraninite age) (Pasteels et al. 1979).

Crystallization of low-U (hydrothermal?) monazites in the Feda augen gneiss suite
at 912-904 Ma (monazite U-Pb ages) (Bingen & van Breemen 1998b).

Closure of the Rb—Sr isotopic system at mineral scale in biotite and feldspar
between 895-853 Ma (Verschure et al. 1980; Bingen et al. 1990).

Intrusion of the WSW-ENE trending undeformed Hunnedalen dyke swarm at 855
+ 59 or 835 + 47 Ma (Sm-Nd mineral ages) or 848 + 27 Ma (*’Ar/*’Ar age on
biotite) (Maijer & Verschure 1998; Walderhaug et al. 1999).

Pre-Caledonian rifting and Caledonian period (0.61 - 0.4 Ga)
Intrusion of the WNW-ESE trending Egersund basaltic dyke swarm at 616 + 3
Ma (U-Pb baddeleyite age) (Bingen et al. 1998D).

M-4 pumpellyite-prehnite facies and greenschist facies metamorphism (c. 400 Ma
based on lower intercepts zircon U-Pb discordia lines and secondary K-Ar ages
on green biotite (Verschure et al. 1980; Priem & Verschure 1982).
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Chapter 2

THE EGERSUND-OGNA MASSIF
(by J.C. Duchesne and R. Maquil)

The Egersund-Ogna massif (EGOG) is an anorthositic dome, approximately 20 km in
diameter, emplaced in granulite facies terranes. Petrographically and chemically, the
anorthosite is monotonous at large and made up of granulated, equal-sized (1-3 cm),
homogeneous plagioclase (Ango4s) with locally some megacrysts of orthopyroxene and
plagioclase. The marginal zone of the massif (1-3 km thick) is leuconoritic on the average and
presents a pronounced gneissic texture. The foliation in the leuconoritic margin and in the
envelope is generally concordant. This overall concordance, also recognized by P. Michot
(1957, p.28) has local exceptions. For example, P. Michot has described, on the NW contact
(Roligheden), a recumbent fold whose inverse flank is cross-cut by the foliated leuconorite.
This fact was taken by him as evidence of the contemporaneity of the intrusion with a first
phase of isoclinal folding affecting the region. For the present authors, local discordant
contacts are not inconsistent with the model of intrusion developed below.

Field relations

Detailed mapping by Maquil (1980) (Fig. 2.1) has led to distinguish several varieties of
anorthosites and leuconorites, forming a more or less concentric structure. In the most central
part of the massif (along the coast, near Hellvik), the concentration of phenocrysts of
plagioclase (5-20 cm) and of megacrysts of orthopyroxene (opx) are higher than elsewhere.
The latter form metre-sized subophitic agglomerates with megacrysts of plagioclase. Medium-
grained norite or leuconorite also occurs as patches or lenses (usually oriented) in the
anorthosite, this structure frequently merges into its inverse - norite or leuconorite with lenses
of medium-grained to coarse-grained anorthosite (agglomerates of plagioclases) - and forms
what is called the anorthositic-noritic complex. It can thus be viewed as made up of metre-
sized lens-shaped agglomerates or megacrysts of plagioclases and orthopyroxenes, embedded
in a finer-grained matrix, grading from pure anorthosite to norite. The noritic material
characteristically varies in grain size. It can pass over short distances from a pegmatite to a
fine-grained rock. The relation with the anorthosite shows all gradations between diffuse,
anastomosed contacts and sharp, abrupt, dyke-like contacts. These various characters are not
restricted to the core of the massif but can be observed at several places in the anorthosite.
Small hemo-ilmenite veinlets occur exclusively in the core of the massif.
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HALAND MASSIF

Fig. 2.1. Geological map of the Egersund-Ogna massif-type anorthositic body.

Legend:
1. Medium-grained anorthosite
1A.  Anorthosite with phenocrysts and aggregates of plagioclase (5-30 cm)
IB.  Anorthosite with aggregates of megacrysts of ortopyroxenes and plagioclases
1C. Homogeneous leuconoritic anorthosite
1D.  Association of interfingered anorthosite and norite with sharp or diffuse contacts
2. Homogeneous leuconorite, faintly foliated
3. Foliated anorthosite and leuconorite
3B. Stretched aggregates of megacrysts (opx and/or plagioclase)
4. Foliated anorthosite
5. Noritic dykes (without Fe-Ti oxide minerals) (variable grain-size)
6. Ibid (with Fe-Ti oxide mineral)
7. Fe-Ti oxide veins and veinlets
8. Layered norite-pyroxenite intrusion
9. Zone of anorthositic and leuconoritic foliated inclusions
10.  Monzonoritic and noritic dyke
11.  Layered noritic to monzonoritic intrusion
12.  Charnockitic and migmatitic gneisses
13.  Mine: A: Kaolinitized anorthosite
Exploration site: S: Fe-Ni sulfide
14.  Strike and dip

Note: the dolerite dyke swarm is not represented.
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The marginal zone of the massif can be considered as being formed by rock types and
associations similar to those of the core of the massif but in various stages of deformation,
producing a variety of textures from a simple magmatic orientation to a completely
recrystallized granoblastic texture.

The mega-opx are kinked, granulated and stretched over several metres along the
foliation. The aggregates of phenocrysts of plagioclases give rise to layers, bands or lenses of
meta-anorthosite; the norite, to noritic gneisses, etc. The foliation always coincides with the
layering. Rapid variation in grain-size of the foliated rocks can be attributed to differing
deformation rates and/or to variation in grain size of the original rock. Dykes of noritic
material can be found cutting across the foliation: a single unfoliated dyke can be sheared
(and foliated) in place, faulted and displaced a few metres away along strike. This indicates
that deformation in the margin has taken place in several episodes and has become less and
less pervasive and progressively restricted to discrete surfaces. This is good evidence of
continuous deformation.

Photo 2.1 High-alumina orthopyroxene megacrysts in anorthosite. The hammer handle is 1 m
long.

A homogeneous, faintly foliated leuconorite constitutes a third important petrographic unit. It
is grossly concentric with the core and at equal distance to the margin (Fig. 2.1). A system of
Fe-Ti oxide-rich noritic dykes, with variable grain size though commonly pegmatitic (Michot
1960), cuts across the anorthosite and Bjerkreim-Sokndal (BKSK) intrusion. The dykes occur
everywhere in the anorthosite but are more concentrated towards the margin.
Petrographically, they contrast with the noritic material of the anorthosito-noritic complex by
the presence of Fe-Ti oxide minerals.
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Photo 2.2 Plagioclase and Fe-Ti oxide exsolutions in opx megacryst
(sample 66-119) (see Table 2.1. for the bulk composition).

Numerous blocky fragments of meta-anorthosites and meta-leuconorites occur as inclusions
in the central anorthosite (mentioned by Michot 1960, on Ystebrod Island).

Mineral geochemistry

The anorthosite and related leuconorites and norites from the central part of the massif contain
a plagioclase of monotonous composition: the anorthite content is between 40 and 45 wt.%,
Sr 800-1000 ppm; Ba 100-250 ppm; K,O 0.5-0.8%. The plagioclase phenocrysts are usually
different from the matrix plagioclase. Nevertheless some of them, namely those associated
with megacrysts of orthopyroxene in sub-ophitic texture, are more calcic (Anss), but with
similar Sr contents, lesser K,O (<0.4%) and Ba (<100 ppm) contents. They typically show
labradorescence (Boggild intergrowths).

The megacrysts of orthopyroxenes contain numerous exsolution lamellae of plagioclase
(Emslie 1975 ; Maquil & Duchesne 1984)), a peculiarity which is common to all anorthositic
massifs in the Egersund Province as well as in most anorthosite massifs elsewhere in the
world. Their bulk chemical compositions are given in Table 2.1. Little variation in Fe/Mg
ratio is to be reported (Fig. 2.2). Experimental data indicate that Ca-tschermakitic opx are
stable only at high pressure and temperature. For an Al,O3 content of about 7-9% - which
characterizes the opx from the central part of the massif - estimates of pressures between 10
and 12 kb were suggested by Maquil (1979) and later confirmed by the experiments of Fram
& Longhi (1992).

Exsolution of plagioclase takes place by decreasing pressure and oxidizing conditions
when it is coupled with the exsolution of oxide mineral (Emslie 1975). By contrast the opx of
the norite which encloses agglomerates of megacrysts has an Al-content around 2-3% Al,Os,
a value also shared by cumulate opx from the neighbouring BKSK intrusion and by
granoblastic leuconoritic gneisses from the margin. The Cr content of the mega-opx from the
central part comprises between 600-950 ppm, values definitely higher than those of the norite
opx (less than 200 ppm) (see Fig. 2.3).
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Table 2.1. Bulk chemical composition of aluminous mega-orthopyroxenes from the Egersund-Ogna massif
(central part and margin), the Helleren massif and the Ana-Sira massif (Analysts: G. Bologne - wet chemical
analysis of major elements; R. Maquil - trace elements by XRF).

1 2 3 4 5 6 7 8 9 10 11 12 13
Si0, 50.05 50.59 5032 5097 51.54 51.08 52.88  48.69 49.23  48.99 49.56  49.53  48.46
TiO, 0.40 0.38 0.47 0.55 0.35 0.47 0.20 0.61 0.89 0.62 0.66 0.83 0.64
ALO3 8.35 7.02 8.86 3.50 5.69 5.69 3.50 8.41 7.31 7.57 7.35 7.82 8.72
Fe,0O5 3.38 2.98 3.17 5.31 4.00 3.59 3.60 5.33 4.51 3.68 5.96 5.20 5.19
FeO 10.55 11.45 10.52 18.41 1030  12.90 1334 12.63 13.53 13.43 12.11 12.70  11.27
MnO 0.18 0.23 0.13 0.33 0.27 0.28 0.25 0.25 0.28 0.26 0.27 0.23 0.23
MgO 25.74 24.88  23.11 18.55 26.00 2371 2535 2270 22.02 23.04 2253 2295 2391
CaO 1.44 1.33 1.27 1.37 1.39 1.57 0.60 1.54 2.07 1.66 1.71 1.20 1.47
Na,O 0.22 0.17 0.35 0.17 0.25 0.28 0.24 0.31 0.31 0.20 0.14 0.24 0.25
K,O 0.04 0.06 0.12 0.08 0.22 0.25 0.12 0.07 0.09 <0.04 0.05 0.09 <0.04
P,0s 0.07 0.06 0.09 0.02 0.01 0.01 0.13 0.06 0.03 0.03 0.03 0.04 0.01

Total 10042 99.15 9840  99.27 100.17  99.84 100.22 100.60 100.28 99.52 100.38 100.83 100.18

Trace elements (ppm)

Cr 730 639 784 280 996 1321*  1209* 595 595 578 565 728%* 891
Ni 245 323 206 155 283 193* 345% 219 258 235 218 222% 321
Co 112 100 106 120 95 110* 112* 122 118 124 121 122* 114
v 192 156 178 399 172 205%* 170%* 215 214 209 201 206* 196
Zn 89 59 75 222 60 83%* 150* 104 104 96 106 105* 82

Structural formula

Si 1.7816  1.8271 1.8198 19114 1.8440 1.8518 1.9035 1.7608 1.7922 1.7893  1.7930 1.7826 1.7488
ATV 02184  0.1729 0.1802 0.0886 0.1560 0.1482 0.0965 0.2392 0.2078 02107 02070 02174 02512
Al'VI 0.1319  0.1257 0.1974 0.0660 0.0840 0.0949 0.0519 0.1193 0.1059 0.1150 0.1065 0.1143 0.1196

Ti 0.0107  0.0104 0.0128 0.0155 0.0095 0.0129 0.0054 0.0165 0.0243 0.0171  0.0180 0.0225 0.0173
Fe** 0.0907  0.0812 0.0865 0.1501 0.1075 0.0980 0.0973 0.1451 0.1234 0.1010  0.1622 0.1410 0.1409
Fe** 0.3140 03459 0.3181 0.5773 0.3084 0.3912 0.4016 0.3820 0.4119 0.4102  0.3665 0.3823 0.3402
Mn 0.0053  0.0069 0.0039 0.0106 0.0032 0.0085 0.0076 0.0076 0.0085 0.0081 0.0083  0.0069 0.0069
Mg 1.3658 1.3395 1.2459 1.0372 13873 1.2815 1.3604 1.2237 1.1950 1.2547 1.2152  1.2314 1.2863
Ca 0.0550  0.0514 0.0491 0.0550 0.0533 0.0610 0.0231 0.0598 0.0807 0.0650  0.0663 0.0463 0.0568
Na 0.0150  0.0117 0.0243 0.0122 0.0172 0.0196 0.0169 0.0217 0.0219 0.01400 0.0100 0.0169 0.0173
K 0.0017  0.0026 0.0056 0.0036 0.0099 0.0118 0.0056 0.0030 0.0044 0.0000  0.0022 0.0043 0.0000
P 0.0021  0.0017 0.0026 0.0005 0.0004 0.0004 0.0039 0.0017 0.0009 0.0009 0.0009 0.0013 0.0004
cat 39911 39749 39414 3.9244 3.9759 3.9682 3.9690 3.9779 3.9726 3.9862 39540 3.9632 3.9861
En 74.81 73.69 7334  57.01 7477 6996 7226 6759 6599 6854 67.16 6839  70.50
Fs 22.18 235 2378 3997 2237 2671 2651 29.10 2954 27091 29.19  29.06  26.37
Wo 3.01 2.8 2.88 3.02 2.86 3.33 1.22 3.31 4.47 3.55 3.65 2.56 3.13

(*) duplicate analyses

Sample location: 1. JCD66.119.2B — Egersund-Ogna massif - Kalvshagen (LK156.872) Agglomerate of the
central anorthosite (see stop 1.3); 2. JCD75.23.1A - id. - Rubben (LK174-881) id; 3. JCD75.24 - id. Skansefjellet
(LK167-887) id; 4. JCD75.39 - id - N. Soltuva (LK228-925) - Foliated noritic pegmatite; 5. JCD75.32B - id. -
W. Haugsenga (LK128-971) - Undeformed core of an enormous megacryst from the gneissic margin (see stop
1.4); 6. JCD75.63.1 - id. - Road E18 near Eikenstein (LK301-918) - Undeformed part of a megacryst from the
gneissic margin; 7. JCD64.02 - id. - Road E18 near Krossmoen (LK315-904) — id; 8. JCD75.65 - Amdal-
Helleren-Rodland massif - Stemmetjorna (LK360-744) - Aggregate of megacrysts (plagioclase and green spine
exsolutions); 9,10,11. B1,B2,B3 - id (same location as JCD75.65) (collection J.Belliére); 12. JCD75.74A - Ana-
Sira massif - E. Allestad (LK550-654) - Aggregate of megacrysts (plagioclase and green spinel exsolutions); 13.
JCD75.75 - id - W. Stavvatnet (LK5395-614) - id.
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Fig. 2.2. Plot of chemical compositions of mega-orthopyroxenes (see Table 2.1.) in the pyroxene diagram. The
opx from the pegmatitic noritic dykes are distinctly Fe-richer than the other types, which show relatively little
scattering.

Notable differences exist in the geochemistry of mega-opx and plagioclase from the central
part and from the marginal zone of the massif. Undeformed mega-opx from the margin
contain 3.5-6% Al,Os; with Cr between 600 and 1500 ppm (Fig.2.3). Plagioclases in the
margin vary from Angs up to Anss and have an uniformly low Sr content (350-450 ppm) and
low Ba content (< 100 ppm), as was noted by Duchesne (1966) and by Duchesne & Demaiffe
(1978) (Fig. 2.5).

Compared to Cr, the other trace elements in mega-opx show little variation (Fig.2.4): V
= 289+ 29 ppm; Ni = 276 + 45 ppm; Zn = 133+ 22 ppm; Co = 103 = 7 ppm; MnO = 0.24 +
0.02 ppm. This indicates that during mineral melt equilibrium the bulk partition coefficients
of the various elements remain close to unity, which in turn implies cotectic crystallization of
plagioclase and orthopyroxene and precludes olivine and Fe-Ti oxides at the liquidus (Maquil
et al. 1980).

Plagioclases from blocky inclusions of leuconoritic and anorthositic gneiss are
geochemically similar to those from the foliated margin of the massif (Fig. 2.5). Since these
geochemical characters are restricted to plagioclase from the margin and the inclusions are
texturally similar to the gneisses of the margin, it can be concluded that they represent
fragments broken from the margin of the massif.
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Fig. 2.3. Cr (ppm) vs ALO; (%) variations in mega-opx from EGOG massif (Table 2.1). Legend: 1: central
anorthosite; 2: foliated margin; 3: noritic pegmatite; 4: cuspate opx separated from medium grained leuconorite
in the anorthosite-norite complex.

Geothermometry

Though clinopyroxene is relatively rare in the EGOG body, Maquil and Duchesne (1984)
have selected cpx-bearing samples in various geological occurrences and measured opx-cpx
compositions. Application of Wells’ (1977) geothermometer and consideration on the Al-
content of the pyroxenes give the following main results:

1.  Equilibrium temperatures in stretched and recrystallized mega-opx from the margin
(granoblastic texture) are on the average higher than in metabasites of the granulitic
envelope, some samples from the margin indicating temperatures in excess of 100°C
over that of the envelope;

2. The maximum temperatures measured in the margin are also higher than solidus
temperatures in the norites from the centre;

3.  Exsolution in mega-opx have started at higher temperatures and pressures than those
that prevailed at completion of crystallization or during recrystallization.

Petrogenesis

Generation of huge and monotonous masses of anorthosite has been long debated. It is the
central question of the so-called “ anorthosite problem ”. The discovery that the mega-opx -
an ubiquitous mineral in all massif-type anorthosites - were Ca-tschermakitic has thrown new
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light on the question. Though experimental data on the plagioclase - Al-opx system are still
scarce compared to the garnet - or spinel - bearing systems, there is little doubt that the mega-
opx from the central anorthosite have started to crystallize at high P, T conditions (around 10-
12 kb and 1250°C) and, being interstitial to plagioclase crystals, plagioclase was also stable
on the liquidus under those conditions. Accordingly, the P, T conditions for the crystallization
or the opx from the margin were not so high: the opx contains less Al and the plagioclase is
more Ca-rich, in agreement with experimental data (Green 1970; Fram & Longhi 1992). The
composition of the minerals from the noritic matrix also points to a final consolidation at an
even shallower depth.
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Fig. 2.4. Transition element content vs Cr content in opx from the EGOG massif (ppm). Legend: Open circle:
mega-opx from the central anorthosite: filled circle: mega-opx from the margin; triangle: opx from norite
pegmatite.

The nature of the parental magma of EGOG is not known. No “ chilled ” margin has been
unambiguously recognized, though fine-grained noritic rocks occurring locally at the contact
with the migmatitic gneiss envelope and septa are potential candidates. The contrast in
composition between the plagioclase and the mega-opx from the central part and the foliated
margin is still partly enigmatic. The variation in Sr content of the plagioclase (low in the
margin and high in the center) does not result from a variation in the partition coefficient
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value between plagioclase and melt with pressure, though pressure significantly increases the
partitioning of Cr between opx and melt (Vander Auwera et al. 2000). This opens the
possibility that a jotunitic magma could be parental to the central anorthosite and a high-
alumina basalt to the foliated margin. This confirms the possible existence of two different
parental magmas to account for the Rogaland massifs, as already suggested by Duchesne et al.
(1985) but now with an important difference: a basaltic magma produces the labradorite
anorthosite massifs, and a jotunitic magma gives rise to andesine anorthosite, such as the
central part of EGOG, the BKSK succession of rocks, the Hidra Massif, etc.
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Fig. 2.5. Sr (ppm) vs CaO (%) in plagioclases form EGOG massif. Legend: (asterisk): phenocryst from the
central part and from the margin; (cross): matrix plagioclase from the central part; (square) matrix plagioclase
from the margin; (dot): plagioclase from inclusion.

Though many points remain unsolved, a general model for the crystallization and
emplacement of the EGOG massif can be tentatively proposed (Duchesne & Maquil 1981;
Magquil & Duchesne 1984). It basically accounts for the following features:

1.  occurrence in the field of all transition terms between magmatic and metamorphic
textures, particularly coincidence of the foliation plane with the compositional layering,
and also between protoclastic and granoblastic structures points to various degrees of
deformation.

2. indication of successive deformations in the margin.

3. evidence that the deformation leading to granoblastic structure was already completed
when large parts of the massif were still capable of intrusion (gneissic inclusions,
unfoliated noritic dyke in the margin, etc.).

4. occurrences of different compositions between phenocrysts and matrix minerals
(particularly mega-opx with different Al and Cr contents).
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5.  indications from available geothermometers (cpx-opx) and barometers (Al in
pyroxenes) of crystallization (and recrystallization) processes along a P-T gradient.

These points of evidence are in favour of an emplacement process in which the anorthosite, in
a mushy stage, lubricated by a minor amount of interstitial liquids and containing megacrysts
or aggregates of megacrysts, forms at depth, rises diapirically in the crust and produces its
own deformation along the walls and within the mass. A ballooning process locally leads to
the foliation of marginal parts and also sufficiently deforms the external metamorphic
envelope (syn-emplacement deformation) to achieve parallel structure on both sides of the
contact. A final telescopic flattening of the whole system extends the area of the massif by
bringing the root of the diapir near its roof in a central position.

This interpretation of the EGOG body, proposed by Duchesne & Maquil (1981) and
Magquil & Duchesne (1984), was confirming a model of diapiric emplacement suggested by
Martignole & Schrijver (1970) for the Morin anorthosite (but later on disproved by
Martignole 1996). Maquil & Duchesne (1984) showed that the emplacement mechanism was
not necessarily linked to a regional deformation, but this one could not be precluded until
accurate age measurements (U-Pb on zircon extracted from mega-cryst aggregates) gave an
age of 931+3 Ma (Schérer et al. 1996), some 70 m.yr. younger than the last recognized
regional deformation.

The various structural and petrographic characteristics of the EGOG pluton together
with thermo-mechanical properties of anorthosite and mid- and lower crustal rocks were used
by Barnichon et al. (1999) to build up a finite element mechanical model of diapiric rise and
emplacement. This model confirms that diapirism of an anorthosite mush through the lower
crust can indeed take place in the relatively small time interval measured, and gives rise to a
strain regime in agreement with field observations.

The other large anorthositic massifs (Ana-Sira and Helleren) also contain the EGOG
“trilogy ” i.e. (1) mega-crysts of Al-rich opx, (2) anorthosite-norite complex, (3) large parts
made up of foliated rocks as well as gneissic inclusions. As far as the emplacement
mechanism is concerned, the similarities with EGOG are striking and basically the same
diapiric process can be accounted for. The interaction between the uprising anorthosite diapirs
and the surrounding rocks, namely the BKSK layered intrusion and the migmatitic gneiss
envelope, has led to a gravity controlled tectonic in which the BKSK intrusion was folded in a
(rim) syncline to accommodate the uprise of the EGOG and Helleren massifs to the East and
of the Helleren and Ana-Sira massifs on both sides of the Sokndal lobe (Bolle et al. 2000).

skoksk
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Chapter 3

THE BJERKREIM-SOKNDAL LAYERED INTRUSION
(by Brian Robins and J. Richard Wilson)

Introduction

The Bjerkreim-Sokndal Intrusion (BKSK) (Michot 1960; 1965; Duchesne 1987a; Wilson et
al. 1996) is a large (40 km long and up to 15 km wide), Late Proterozoic layered intrusion that
occupies an area of about 230 km? (Fig. 3.1). Lithologically the intrusion consists of virtually
all of the rock types belonging to the anorthosite kindred, i.e. andesine anorthosite, troctolite,
leuconorite, norite, gabbronorite, jotunite (hypersthene monzodiorite), mangerite (hypersthene
monzonite), quartz mangerite and igneous charnockite (hypersthene granite). Anorthosite,
leuconorite and norite are accompanied by ilmenite-rich rocks.

The BKSK is emplaced in granulite-facies quartzo-feldspathic and mafic gneisses as
well as anorthosite and leuconorite belonging to the Egersund-Ogna (Michot & Michot 1970;
Duchesne & Maquil 1987), Hiland-Helleren (Michot 1961) and Ana-Sira (Krause et al. 1985;
Duchesne & Michot 1987) massifs, and xenoliths of all these host rocks are common within
the intrusion itself (Duchesne 1970).

The BKSK and the various anorthosite massifs are cut by members of a suite of small
plutons and wide, laterally-persistent dykes of jotunite, some of which are differentiated
(Duchesne et al. 1989; Wilmart et al. 1989). The most voluminous of the jotunites that cut the
northern part of the BKSK is the Lomland dyke/sill complex (Duchesne et al. 1989). The
BKSK is also cut by members of the Egersund swarm of basaltic dykes.

Shape and internal structure of the Bjerkreim-Sokndal intrusion

The Bjerkreim-Sokndal Intrusion has generally been described as a lopolith, but recent
detailed mapping shows it to be a trough-like, discordant intrusion. Modelling of the
associated +10-30 mgal gravity anomaly (Smithson & Ramberg 1979) and a seismic
reflection profile (Deemer & Hurich 1997) shows that the base of the intrusion lies at a depth
of 4-5 km.

Layering within the intrusion is deformed into a deep, doubly-plunging syncline that
branches in the south around a dome cored by the Ana-Sira anorthosite massif (Fig. 3.1). The
core of the syncline is occupied by quartz mangerite and charnockite, which do not exhibit
modal or textural layering, and these are separated in places from the underlying mangerite by
a zone with abundant wall-rock xenoliths. The magnitude of the gravity lows over the
granitoids suggests a maximum thickness of about 2 km (Smithson & Ramberg 1979). There
is no evidence that the roof of the intrusion is preserved anywhere within the confines of the
present outcrop.
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Fig. 3.1. Location (A), sketch map (B), and stratigraphic subdivision of the Bjerkreim lobe (C) of the Bjerkreim-
Sokndal Intrusion.

The BKSK consists of three lobes; the Bjerkreim lobe in the north-west, and the smaller
Sokndal and Mydland lobes to the south and south-east respectively (Fig. 3.1B). Modal
layering and phase contacts in the Bjerkreim lobe are disposed in a syncline that plunges
south-east at 20-40°. In the steep limbs of the syncline the cumulates are foliated, generally in
the plane of modal layering. In places, cumulus minerals form augen in a foliated matrix,
small shear zones are developed, and there is a strong mineral lineation. Linear mineral and
magnetic fabrics dominate in the core of the syncline (Paludan et al. 1994 ; Bolle et al. 2000).
Cumulus plagioclases are strained or recrystallised to shape-oriented polygonal aggregates,
whereas prismatic Ca-poor pyroxenes are commonly kinked or bent. Uniform paleomagnetic
vectors in different parts of the intrusion (Poorter 1972) suggest that the deformation and
development of the synformal disposition of the layering took place at temperatures in excess
of the Curie point (550-650°C). The synformal disposition of the layering is inferred to be due
to gravitational foundering (Paludan et al. 1994 ; Bolle et al. 2000).

The layered series

The Layered Series in the Bjerkreim lobe has a thickness of >7000m in the axial region of the
syncline and can be divided into 6 megacyclic units (MCU 0 to IV) which exhibit
characteristic sequences of cumulates (Figs. 3.1 and 3.2). The megacyclic units can be further
subdivided into zones a-f, based on assemblages of cumulus minerals (Figs. 3.2 and 3.3).
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Fig. 3.2. Stratigraphy of the Layered Series of the Bjerkreim-Sokndal Intrusion as developed in the axial region
of the Bjerkreim lobe and its subdivision into macrocyclic units and cumulate zones.

The megacyclic units vary in stratigraphic thickness, lateral persistence and in the nature of
the layer sequences they exhibit. The lower three megacyclic units, exposed only in the
northernmost part of the intrusion, are individually as much as 1300m thick but show a
pronounced southward thinning in the western limb of the syncline and are not developed in
the southern parts of the Bjerkreim lobe.

The lowermost cumulates are exposed in the north-western part of the Bjerkreim lobe
and consist of plagioclase-hypersthene-ilmenite cumulates (phiC). They are regarded as the
top of MCU 0, the rest of which, together with an unknown thickness of cumulates, is hidden.
These cumulates are overlain successively by pC, piC and phC belonging to MCU IA
(~1300m thick in a profile along the axial trace of the syncline).

This sequence is repeated in MCU IB (~875m thick) which locally also displays more
evolved lithologies with the entry of cumulus Ca-rich pyroxene, followed by apatite and
magnetite. MCUs 0-IB are characterised by the presence of plagioclase megacrysts (up to 10
cm long) in all rocks with the exception of the most evolved cumulates at the top of MCU IB
MCU II (reaching a thickness of 1600m) consists of a thin layer of magnetite-bearing piC
overlain exclusively by phiC. The appearance of cumulus magnetite in the leuconorites at the
base of MCU II and its absence in the overlying cumulates suggests affinities with the
olivine-bearing zones near the bases of succeeding MCUs. The base of MCU II is
characterised by a marked regression in the composition of cumulus plagioclase (Fig. 3.3).
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Fig. 3.3. Generalised stratigraphy and cryptic layering of the Bjerkreim-Sokndal Layered Intrusion. After Wilson
et al. (1996).

MCU I (maximum ~1100m thick) generally has a lower zone (Zone Illa in Fig. 3.3) up to
140m thick that consists mainly of pC, but with interlayered iC, phiC and hiC. The base of the
zone is marked by a thin (<10m) sulphide-bearing subzone, unique in the Layered Series, that
consists of ilmenite norite, mafic ilmenite norite or massive orthopyroxenite. Zone a is
characterised by a stratigraphic regression to higher-temperature mineral compositions. In the
axial region of the intrusion and on the southern flank, zone a is overlain by leucotroctolite
(zone b) that contains cumulus magnetite in addition to plagioclase, olivine and ilmenite.
Together with the similar rocks near the base of MCU 1V, the zone IIIb cumulates are the
most primitive cumulates in the intrusion. The leucotroctolite is in turn overlain by phiC of
zone c, followed by magnetite norite (Zone d) and gabbronorite (Zone e) with the successive
(re-)entry of cumulus magnetite and then apatite together with Ca-rich pyroxene. In the
eastern flank of the intrusion MCU III is relatively condensed and zone b is absent. Zone e is
only developed in the flanks of the lobe. In the axial region the base of MCU IV rests on zone
d cumulates.

MCU IV (maximum thickness ~1800m) displays a sequence similar to MCU III. MCU
IV contains, however, additional, more-evolved cumulates. Michot (1960) recognised the
prominent olivine-bearing zone b near the base of MCU IV and referred to it as the "Svalestad
horizon". It has a thickness of about 100m and is laterally persistent along strike for about
24km. Olivines in the olivine-bearing zones near the bases of MCU III and IV are partially or
completely replaced by orthopyroxene-Fe-Ti oxide symplectites, but the zones are texturally
distinctive even where no olivine remains. Small amounts of biotite and hornblende also
occur in the olivine-bearing zones. Ca-poor pyroxene is inverted pigeonite in the upper part of
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MCU IV (Zone f) which grades into overlying mangerite through a jotunitic Transition Zone
(TZ) whose base is defined by the re-entry of olivine (~Fosp), which more or less coincides
with the appearance of interstitial alkali feldspar (Duchesne et al. 1987). With the appearance
of cumulus mesoperthite the rocks grade upwards from jotunite to mangerite, which in turn
passes into massive quartz mangerite and, locally, charnockite. Even in these highly-evolved
rocks, hydrous phases are not abundant: Calcic amphibole is generally a minor mineral
(except in the uppermost part of the granitoids where it may occur as large oikocrysts) and
biotite is generally an accessory mineral. The combined thickness of the mangerite, quartz
mangerite and charnockite is >350m (Rietmeijer 1979) and may be as much as 2km
(Smithson & Ramberg 1979).

Viewed on a broad scale (Figs. 3.2 and 3.3), the lower part of the Layered Series is
dominated by plagioclase cumulates, the middle part by plagioclase-hypersthene-ilmenite
cumulates and the upper part by plagioclase-hypersthene/pigeonite-augite-ilmenite-magnetite-
apatite cumulates. Combined with the reversals to relatively primitive mineral assemblages at
the bases of the MCUs, this is strong, first-order evidence that the Layered Series crystallised
in a continuously fractionating, periodically replenished magma chamber. Replenishment
events were few in number and widely spaced in time. The bulk composition of the magma
occupying the chamber after each replenishment event can be judged by the relative volumes
of the respective types of cumulate that constitute the successive macrocyclic units. In the
lowermost units the cumulates represented are predominantly high-temperature varieties and
the proportion of more-evolved cumulates generally increases in the upper units. This pattern
suggests that the bulk composition of the magma occupying the chamber became
progressively more evolved with time.The base of MCU IV seems to reflect the last major
influx of magma into the BKSK chamber. This replenishment event appears to have involved
a large volume of magma and was associated with very significant expansion of the chamber.
The regressive layered sequences beneath the most-primitive leucotroctolitic cumulates in
MCUs III and IV are up to 120m thick, showing that replenishment of the magma chamber
must have taken place over a prolonged period of time. After the influx of magma reflected by
the MCU III/IV transition, fractional crystallisation was apparently uninterrupted and we
interpret the stratigraphic transition to mangerite, quartz mangerite and charnockite as
reflecting progressive differentiation of the residual magma, probably containing a significant
crustal component due to assimilation of country rocks and hybridisation with roof melts.

Fe-Ti oxides in the Bjerkreim-Sokndal intrusion

[lmenite is an early-crystallising, almost ubiquitous mineral in the Bjerkreim-Sokndal
intrusion. Substantial concentrations of ilmenite are restricted, however, to the regressive
sequences that occur at the bases of the upper MCUs, especially units III and IV. Ilmenite and
plagioclase-ilmenite cumulates are prominent in zone [Va in the axial region of the intrusion,
and ilmenite-rich melanorites are found at the base of MCU III to the east of Teksevatnet.
This relationship indicates that the generation of ilmenite-rich cumulates was related to
replenishment of the Bjerkreim-Sokndal magma-chamber and was probably a consequence of
turbulent mixing of the resident magma with inflowing more-primitive jotunitic magma.

Ilmenite exhibits a general decrease in hematite content through the Layered Series,
from 16-20% in the lower part of the series where it is the only cumulus Fe-Ti oxide, to about
2% in the mangerite and quartz mangerite (Duchesne 1972a). This pattern is repeated on a
smaller scale in the individual MCUs. Ilmenite contains about 0.3% V,03 in the lower part of
the Layered Series and shows an identical variation to hematite content. Manganese in
ilmenite, however, increases almost continuously through the Layered Series, from about
0.3% MnO in leuconorites near the base to 1.0% MnO in mangerite; breaks in the trend at
contacts between MCUs are slight. Nickel and chromium are enriched in ilmenite at the bases
of MCUs where concentrations can be as high as 1000 ppm Ni and 1.4% Cr,0s.
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Magnetite is a cumulus phase in the upper parts of MCUs IB, III and IV, in the TZ
where it occurs in oxide-rich layers, and in the leuconorites and/or leucotroctolites near the
bases of MCUs I, Il and IV. Its TiO, content increases systematically from <2% in zone d of
MCU III to as much as 19% (corresponding to UspssMts,) in the TZ. As with ilmenite, the
Mn-concentrations increase (to ~0.25% MnO at the top of MCU IV) and vanadium decreases
upwards through the Layered Series (from ~1.3% to 0.02% V,0; at the top of MCU 1V)
(Duchesne 1972a). Magnetite in leucotroctolite at the base of MCU IV contains lower V
concentrations (1.0-0.75% V,03) than the magnetite in the uppermost part of MCU III and on
its reappearance in the upper part of MCU IV, possibly due to the presence in the
leucotroctolite of small amounts of amphibole that has a high partition coefficient for V
(Jensen et al. 1993). Ni concentrations are generally low (< 40 ppm), except in the
leucotroctolites at the bases of MCUs III and IV where concentrations are 900-600 ppm.
Nickel decreases with stratigraphic height in the leucotroctolite at the base of MCU IV.
Chromium exhibits the same behaviour as Ni, concentrations in the leucotroctolite at the base
of MCU 1V varying from 1.4-0.4% Cr,0O3;. Chromium contents in magnetite elsewhere in the
BKSK are very low.

Parental magma

Fine to medium-grained, granular jotunites are present at several places along the steep,
discordant northern margin of the BKSK. They occur along the outer margin of an up to
100m thick Marginal Series that separates cumulates belonging to MCU IA and IB and the
high-grade gneisses of the metamorphic envelope (Fig. 3.1). The marginal jotunites are
generally sparsely to markedly porphyritic and are considered to be chilled representatives of
the magma that was parental to the oldest part of the Layered Series.

The jotunites are evolved basic rocks characterised by high FeO' (11.1-12.9 wt%) and TiO,,
MgO in a narrow range between 3.8 and 5.0 and low CaO (5.4-6.7 wt%) (Fig. 3.4). They
exhibit light REE-enriched chondrite-normalised rare-earth patterns with either a small
positive Eu-anomaly or none at all, suggesting that previous fractionation or accumulation of
plagioclase phenocrysts was very limited. Their compositions are similar to the jotunite
trapped between anorthosite blocks enclosed within the plagioclase cumulates of MCU 1B at
Tjern that likewise has been claimed to be representative of a parental magma (Duchesne &
Hertogen 1988), and also to marginal jotunites of the Hidra Leuconorite (Duchesne et al.
1974).

The marginal jotunites have features that are consistent with a status as the parental
magma for the cumulates of MCU IA and IB of the Layered Series of the BKSK. Textures
show clearly that plagioclase was the first phase to crystallise from the jotunite magma and
was followed by Ca-poor pyroxene and Fe-Ti oxides. The jotunites are rich in TiO;, and poor
in diopside components, compatible with the early crystallisation of cumulus ilmenite and the
delayed appearance of cumulus Ca-rich pyroxene. The chemistry of the minerals in the
jotunites is also comparable with the BKSK Layered Series: Plagioclases in the jotunites are
slightly more sodic and the pyroxenes decidedly more iron-rich than the equivalent highest-
temperature minerals in the BKSK cumulates. The presence of interstitial K-feldspar and
quartz in the marginal rocks also demonstrates that the jotunite magma had the potential to
produce a significant amount of an acid residual magma, as required by the presence of the
granitoids at the top of the BKSK Layered Series.

Dry melting experiments on a jotunite collected from Tjern show that such melts have
plagioclase as the sole liquidus phase to ~7kb at temperatures of 1150-1165°C and oxygen
fugacities of between FMQ-2 and FMQ-4 (Vander Auwera & Longhi 1994). Olivine, ilmenite
and Ca-poor pyroxene (which crystallises together with olivine) appear successively at lower
temperature within ~55°C of the liquidus at pressures up to ~5 kb. Allowing for the low
oxygen fugacity in the melting experiments, which stabilises olivine relative to Ca-poor
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pyroxene and suppresses magnetite saturation, and the lower TiO, of the experimental starting
material (3.5wt. %) compared with the marginal jotunites, that reduces ilmenite saturation, the
experimental crystallisation sequence of the jotunite at moderate pressure (5-7 kb)
(plagioclase-hypersthene/olivine-ilmenite) is reasonably similar to that in the lower part of the
BKSK Layered Series, that crystallised at 4-6 kb based on the contact-metamorphic mineral
assemblages (Jansen et al. 1985).

TYPICAL MARGINAL
JOTUNITE (B90)

SiO, 49.8 Q 6.7
TiO, 4.2 or 5.3
Al,0; 15.0 ab 20.3
FeO* 14.2 an 27.5
MgO 5.0 di 4.8
CaO 6.7 hy 26.1
Na,O 2.4 mt 1.6
K,0 0.9 il 8.0
P,O; 0.8 ap 1.8

Fig. 3.4. Major-element composition and CIPW norm of a
typical chilled jotunite from the northern margin of the
Bjerkreim-Sokndal Intrusion. From Robins et al. (1997).

Phase equilibria show that jotunitic magmas have compositions that reside on a thermal
divide at pressures where they coexist with plagioclase and two pyroxenes and cannot be
decendants of mantle-derived basalts (Longhi et al. 1999). They appear to have originated by
melting of lower crustal gabbronorites. Recent investigations of the Re-Os systematics of the
Rogaland Igneous Province (Schiellerup et al. 2000) also support a crustal origin.

Processes in the Bjerkreim-Sokndal magma chamber

Initial emplacement, subsequent replenishment and expansion

The distribution and contact relationships of the oldest cumulates in the Bjerkreim lobe of the
BKSK indicate that the magma chamber during the earliest phases of its evolution was
approximately wedge shaped and relatively limited in horizontal and vertical extent. It is
probable that the initial development of the magma chamber was controlled by displacements
along a normal fault, space being created by more pronounced subsidence of the hanging wall
beneath the floor of the embryonic intrusion than the roof rocks. Thus the cumulates forming
MCU 0-IB crystallised at the base of a chamber with the form of a half graben, the deepest
part of the chamber being along its steep, fault-controlled, north-eastern margin.

The high frequency of anorthositic xenoliths in the early cumulates suggests that the
margins of the early magma chamber were mainly composed of rocks belonging to the
Egersund-Ogna anorthosite massif while part consisted of granulite-facies quartzofeldspathic
and mafic gneisses. The incorporation of large numbers of blocks of anorthosite and
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leuconorite suggests either that extensive stoping took place along the roof and walls of the
chamber or that large numbers of xenoliths were transported into the chamber as it was filled.

During the early stages of evolution of the BKSK chamber there were at least two major
episodes of magma recharge, represented by the bases of MCUs IA and IB. Each of these
were followed by the crystallisation of exceptionally thick sequences of plagioclase-rich, zone
a cumulates on the floor of the magma chamber. The cumulus plagioclase in MCUs IA and IB
is distinctly more sodic (Anss.39) and the orthopyroxene has a lower mg# than in the
succeeding units. Plagioclase is commonly antiperthitic and interstitial quartz and apatite
occur in some of the plagioclase-rich cumulates, features that are uncommon in the higher-
temperature cumulates elsewhere in the Bjerkreim lobe of the BKSK. These observations
suggest that the early, plagioclase-rich cumulates may have crystallised from lower-
temperature, more-differentiated magmas than both those emplaced later in the evolution of
the magma chamber and those represented by the jotunite marginal chills. Systematic
stratigraphic variations in the composition of plagioclase in these rocks are not conspiquous,
despite their considerable thicknesses. These relatively evolved magmas emplaced early in the
development of the BKSK must have had densities sufficiently low to permit the settling of
leuconorite and anorthosite xenoliths and, by inference, also plagioclase primocrysts. The
thicknesses of pC and piC, the inconspiquous cryptic variation and the presence of plagioclase
and rarer orthopyroxene megacrysts in MCUs IA and IB suggest that the magmas may have
been emplaced with significant amounts of crystals, particularly plagioclase, in suspension.

Crystallisation of the multiphase cumulates at the top of MCU IB was interrupted by
emplacement of a voluminous batch of jotunite magma from which the cumulates of MCU II
were formed. This influx of magma led to elevation of the roof and substantial lateral
enlargement of the chamber. Stratigraphic relations show that the edge of the chamber was
displaced by >6 km to the southeast and in the southern part of the Bjerkreim lobe cumulates
belonging to MCU II are separated from the floor of the intrusion by only a thin marginal
zone of plagioclase-rich rocks. The new stretch of floor produced during lateral enlargement
of the chamber was not planar. An elevated ridge existed in the Teksvatnet area, and the MCU
II sequence and later cumulates thin markedly over this topographic feature. The ~2m thick
sequence of phiC that intervenes between the low-temperature cumulates (phcizmzaC)
forming the uppermost part of MCU IB and the higher-temperature zone a cumulates in the
lower part of MCU II indicates that the replenishment event was not instantaneous but
persisted for a period of time. The regressive stratigraphic sequence that crystallised during
the prolonged influx of magma was the result of mixing of some of the resident with the
inflowing magma. Subsequent to replenishment, the magma chamber was occupied by a lens
of liquid residing on a floor of earlier cumulates that dipped inwards at low angles to an axial
depression. Continuous cooling and fractional crystallisation of the magma led to formation
of a thick sequence of pimC and phiC (MCU II). The magma did not differentiate sufficiently
to re-attain saturation in magnetite, Ca-rich pyroxene or apatite before the emplacement of a
further batch of magma.

The replenishment event that terminated the crystallisation of MCU I resulted in a
further expansion of the magma chamber similar to that accompanying the preceeding magma
influx. Judging by the degree of cryptic layering in MCU III, the increase in the depth of the
magma occupying the chamber was, however, much less than during the earlier influx and the
extent of expansion of the chamber appears to have been more limited. Expansion of the
chamber took place by lateral wedging of 1600-3000m towards the south. The edge of the
magma chamber in the southernmost part of the Bjerkreim lobe advanced further into the
Helleren anorthosite massif, and during this processes numerous blocks of anorthosite and
leuconorite were incorporated into the magma chamber.

The final major replenishment event took place after the resident magma had undergone
a degree of fractional crystallisation sufficient to stabilise first magnetite, then Ca-rich
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pyroxene and apatite as liquidus minerals along the more distal (and higher) parts of the floor
of the magma chamber while in the axial region of the magma chamber, magnetite-bearing
noritic cumulates were still crystallising. This phase of magma influx appears to have been
very voluminous and it resulted in a major lateral enlargement of the magma chamber to the
south and the development of the Sokndal and Mydland lobes of the BKSK, where only the
equivalents of cumulates belonging to MCU 1V in the Bjerkreim lobe are represented. During
the lateral migration of the edge of the magma chamber from its previous location near the
present southern margin of the Bjerkreim lobe, myriads of large blocks and slabs of
anorthositic rocks and quartzofeldspathic gneisses were stoped from the enlarging roof of the
chamber. Whilst new, high-temperature magma flowed into the lowest part of the magma
chamber, the less-dense residual magma was probably decanted southwards into the new
Sokndal and Mydland lobes. This major replenishment was followed by almost continuous
differentation that eventually led to the formation of mangeritic cumulates.

Duchesne and Wilmart (1997) have proposed that the crystallisation of mangerite was
terminated by the emplacement of magmas that varied in composition from jotunite to
charnockite. The thick uppermost unit of quartz mangerite and charnockite in the BKSK then
crystallised from a viscous, inhomogeneous mixture of residual acid magmas and externally-
derived, differentiated magma, possibly with additional admixture of anatectic melts derived
from the gneisses that formed part of the roof of the magma chamber. In the Bjerkreim lobe of
the intrusion there is, however, an uninterrupted cryptic variation from the TZ into the
overlying granitoids, suggesting continued cooling and fractional crystallisation of residual
magma.

Crustal contamination

The BKSK magma chamber was emplaced into quartzo-feldspathic and mafic gneisses as
well as massif-type anorthosites. Xenoliths of these country rocks are enclosed in the BKSK
cumulates and are exceptionally abundant in places. It is unlikely that the plagioclase-
saturated BKSK magmas could have assimilated anorthositic rocks or dry mafic gneisses, but
extensive interaction between the magmas occupying the chamber and xenoliths of quartzo-
feldspathic gneiss seems very probable. In addition, the granitoids that form the uppermost
part of the BKSK may have resulted in part from partial melting of gneisses that formed part
of the roof of the magma chamber, and anatectic acid magmas may have mixed with the
underlying more basic magmas occupying the bulk of the chamber.

The initial *’Sr/**Sr ratios (Sro) of cumulates in the Bjerkreim lobe vary substantially
and provide robust evidence of extensive assimilation within the magma chamber. Sryshows a
general evolution with stratigraphic height in the Bjerkreim Layered Series from 0.705 in
MCU II to 0.7086 in the upper part of MCU IV (zone e) (Fig. 3.5). The trend of increasing Sry
is interrupted by regressions to values as low as 0.7048 associated with the lower boundaries
of MCU III and IV. With the exception of the uppermost part of the Layered Series there is a
remarkable antipathetic relation between the cryptic variation as defined by the composition
of cumulus minerals (An%, mg# in pyroxenes) and Sry.
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Fig. 3.5. Cryptic variation in plagioclase compositions and initial Sr*’/Sr* for bulk-rock samples collected
through the Layered Series in the southern flank of the Bjerkreim lobe (after Nielsen et al. 1996). The location of
sample profile 1 is given in Fig. 1. The stratigraphic column to the left is for the Layered Series as developed in
the axial region of the lobe. Note the pronounced cryptic regression associated with the MCU III/IV contact.

There is relatively little isotopic data for the granitoids that form the uppermost part of the
BKSK, and certain aspects of it indicates disturbance of the Rb-Sr system. Wielens et al.
(1980) calculated an isochron that gave an initial Sr isotope ratio of 0.7075£0.0028 on the
basis of some of the data for these rocks reported by Versteeve (1975). Demaiffe et al. (1986)
estimated Sr, for the quartz mangerite to be ~0.7085. Both of these values coincide with that
in the upper part of MCU 1V, eliminating earlier isotopic arguments for a separate origin of
the granitoids, and in accord with an origin as residual, highly-differentiated magmas.
Currently, there is no isotopic evidence that supports an origin for all or part of the quartz
mangerites and charnockites exclusively through anatexis of country-rock gneiss. The
¥7S1/*°Sr ratios (at 930-920Ma) for the gneisses in the vicinty of the BKSK are extremely
variable, but generally higher than that of the quartz mangerite (e.g. 0.7196 for gneisses in
Gydalen, a short distance to the east of the margin of the BKSK (Versteeve 1975)). The
variation in Sry in the Bjerkreim Layered Series is open to interpretation in several different
ways. Assimilation of country rocks (either in situ or as xenoliths) or incorporation of
anatectic melts may have taken place continually during the cooling and fractional
crystallisation of magma that was well-mixed on a chamber scale. Alternatively, the degree of
contamination may have increased towards the chamber roof in a stratified magma, due to
assimilation of increasing numbers of buoyant xenoliths in the upper parts of the magma
chamber or variable amounts of physical mixing with a separate, low-density, anatectic roof
melt. Additionally, a contaminated isotopic signature may have diffused from the roof
downward through a stratified magma column (see below). In view of the evidence in the
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BKSK for magma stratification during at least part of the evolution of the chamber, it would
seem likely that some or all of these processes were operating during the crystallisation of the
cumulates at the base of the magma chamber. Assuming simultaneous assimilation and
fractional crystallisation (AFC), the available Sr isotope data are consistent with a ratio
between the rates of assimilation and fractional crystallisation of ~0.2 (Tegner et al. 2000).

Compositional stratification of the magma chamber

Several features of the stratigraphic organisation of the cumulates in the Bjerkreim lobe of the
BKSK indicate that the magma from which they crystallised was compositionally stratified
and that the density stratification was stable over substantial periods of time.

Detailed mapping of phase contacts has demonstrated that the zone a cumulates at the
base of MCUs IB and II thin dramatically as they are traced from the north-eastern margin of
the intrusion to the south-west, and both zones eventually pinch out within ilmenite norites.
These plagioclase-rich cumulates must be contemporaneous with the lower-temperature
cumulates into which they pass along the strike of the modal layering towards the margins of
the intrusion. The zone a cumulates at the base of MCUs III and IV exhibit a similar
geometrical relationship: They are thickest in the axial region of the intrusion but thin towards
both margins, and wedge out completely to the east towards the Teksvatnet ridge. The
converse relationship is apparent in the uppermost part of MCU III, where the lowest-
temperature cumulates (phcimaC) occur in the more marginal parts of the unit but are absent
in the axial region of the Bjerkreim lobe where the basal cumulates of MCU IV rest on
higher-temperature phimC. These stratigraphic relationships suggest gradients in magma
composition and temperature across the floor of the chamber during fractional crystallisation.
We suggest that the magma occupying the chamber was stably stratified with density and
temperature decreasing and the degree of magma differentiation increasing upwards through
the column of magma, while the cumulate-melt interface was sloping, either uniformly
towards the north-east margin of the chamber (during the crystallisation of MCU IB) or
generally inwards towards the axis of the chamber (during the crystallisation of MCU III). An
exception to this generalisation is the ridge in the chamber floor represented near Teksevatnet
that existed during the crystallisation of MCU II and later units. The cumulates of MCU II-1V
thin over this feature and certain zones wedge out eastwards towards it (e.g. zone IIIb).
Evidently, at the stage in the accumulation of the Layered Series represented by MCUs II and
II1, higher-temperature cumulates were forming in the adjacent basins than on the ridge itself.
During the crystallisation of MCU 1V, the Teksevatnet topographic high appears to have been
largely eliminated.

The angles of 2-15° that exist between certain of the phase contacts and the boundaries
between the megacyclic units in the Bjerkreim lobe provide a reasonable minimum estimate
of the original slopes of the temporary floor of the magma chamber beneath a stratified
magma. The fact that discordances between cryptic and modal layering exist both near the
base and the top of MCU III suggest that magma stratification was extremely stable. It
persisted for at least as long a period of time as the up to 1050m-thick megacyclic unit took to
crystallise.

Whether the column of stratified magma in the BKSK chamber was divided into
horizontal liquid layers separated by diffusive interfaces is not clear from field relations. A
continuously-stratified magma excludes convective mixing. There is, however, clear evidence
within the cumulates of the BKSK for convection during their crystallisation, including cross-
lamination, erosional unconformities and troughs. We therefore suggest that the magma was
discontinuously stratified, and consisted of horizontal, independantly-convecting and
internally homogeneous liquid layers separated by relatively-sharp, diffusive interfaces.
Several processes that appear to have operated in the BKSK magma chamber could have led
to the development of stratification: Entrainment of resident magma and hybridisation in
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turbulent fountains during the emplacement of new, less-differentiated and denser magma
(Campbell 1996); Repeated emplacement of hot, dense magma along the floor of the
chamber, with little mixing with the overlying resident magma (Huppert & Sparks 1980);
Varying degrees of mixing between the resident magma and anatectic melts generated along
the inclined walls and roof of the magma chamber or assimilation of varying amounts of
buoyant wall-rock xenoliths (Campbell & Turner 1987); Compositional convection driven by
density differences arising from crystallisation along inclined surfaces (McBirney et al. 1985).

Hydridisation

The cryptic variation in mineral chemistry and particularly in initial Sr, Nd and Pb isotope
ratios exhibited by a section through the sequence of zone a cumulates above the base of
MCU 1V (see Figs. 1.2.7 & 8 in the description of excursion localities) suggests that the final
influx of magma into the Bjerkreim-Sokndal chamber was prolonged and associated with the
elevation of the differentiated, contaminated and compositionally-zoned column of resident
magma (see Fig. [.2.9 in the description of excursion localities) as well as hybridisation of the
inflowing and resident magmas (Jensen et al. 1993; Barling et al. 2000). This resulted in a
modal regression from phcmiaC to phiC/piC and culminated in the crystallisation of high-
temperature, plagioclase (Anss)-olivine (Fo7s) cumulates. The modal regression is
accompanied by a reverse cryptic variation in mineral compositions and a systematic variation
in initial isotopic ratios (e.g. a steady upward decrease in *’Sr/**Sr from 0.7061 to 0.7048),
demonstrating that the cumulates crystallised from hybrid magmas with an increasing
proportion of the inflowing, more primitive jotunite. Recharge of the magma chamber took
place after prolonged fractional crystallisation of magnetite and consequent decrease in the
density of the resident magma. Hybridisation is envisaged as taking place in a turbulent
fountain with the efficiency of hybridisation of the inflowing magma with the less-dense
resident magma decreasing with time.

In contrast, differentiation of the resident magma was arrested at a relatively early stage
by the influx of magma marked by the MCU II/III contact. MCU II consists exclusively of a
thin basal sequence of plagioclase cumulates and a thick series of phiC. Cumulus magnetite
does not make an appearance in MCU II, and it is likely that the resident magma was
differentiating with increasing density during its crystallisation. The MCU II/III boundary is
characterised by a sulphide-enriched subzone associated with a discontinuous layer of
orthopyroxenite or mafic ilmenite norite. This is succeeded by a general regression in mineral
compositions that culminates in the zone Illb troctolitic cumulates in the central and western
part of the Bjerkreim lobe. Zone b cumulates are, however, absent in the eastern flank.

The stratigraphic relations appear to be consistent with prolonged magma-chamber
recharge associated with progressive mixing of the inflowing jotunitic magma and the
resident, stratified magma whose basal portion was more dense than the replenishing magma.
The sulphide-enriched orthopyroxenite and related melanocratic ilmenite norite that represent
the initial response to the replenishment event are explained by crystallisation of hybrid
magmas residing in the pyroxene phase volume. Their chamber-wide distribution is inferred
to result from mixing taking place some distance above the floor at a level where the plume
formed by the inflowing magma reached a level of neutral buoyancy in the compositionally-
stratified magma column and then spread laterally throughout the chamber (Fig. 3.6). As the
influx proceeded the resident magma was stripped from the base of the chamber and mixed
into the ascending plume as the hybrid layer increased in thickness and became
compositionally stratified. Eventually the lower boundary of the hybrid layer reached the floor
of the magma chamber. The highest-temperature cumulates (poC, zone IIIb) crystallised from
the lowest part of this hybrid layer and were restricted to the central trough on the chamber
floor (corresponding to the axial region of the intrusion), while lower-temperature cumulates
crystallised simultaneously on the eastern “shelf” from magma higher up in the hybrid layer.
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Fig. 3.6. The sequence of events during the influx of magma reflected by zones Illa and IIIb depicted in
schematic W-E sections: A) Magma flowed in as a turbulent plume and the hybrid spread laterally some distance
above the floor of the chamber; B) The hybrid layer thickened and stratified and its lower boundary sank as
resident, denser magma beneath was mixed into the plume. Crystallisation in the hybrid layer resulted in the
sulphide-bearing orthopyroxenite and equivalents. C) The stratified hybrid layer reached the floor of the
chamber. Troctolite (zone b) crystallised in the axial trough while more evolved cumulates formed on the eastern
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Chapter 4

THE JOTUNITIC AND THE ACIDIC IGNEOUS ROCKS
(by J. Vander Auwera, O. Bolle and J.C. Duchesne)

The Jotunite suite

Proterozoic massif anorthosites are usually associated with variable amounts of a
characteristic suite of intermediate rocks. The least evolved rocks of this suite are enriched in
mafic minerals (low- and high-Ca pyroxenes, Fe-Ti oxides, apatite), and in some cases very
high concentrations of these phases give rise to hypermelanic rocks. Different names
including ferrodiorite, monzonorite, jotunite, Fe-Ti-P-rich rocks (FTP) or oxide-apatite
gabbronorite have been used; however, Vander Auwera et al. (1998) referred to them by the
collective term of jotunite (Fe-Ti-P-rich hypersthene monzodiorite). Evolved rocks of the
suite include mangerite (hypersthene monzonite), quartz mangerite (hypersthene quartz
monzonite) and charnockite (hypersthene granite). Vander Auwera et al. (1998) accordingly
referred to the suite as a whole as the jotunite suite.

The origin of jotunites has been the subject of considerable debate, despite their similar
textural and geochemical characteristics from one anorthosite complex to another. Several
hypotheses, not mutually exclusive, have been proposed: (1) jotunites are residual liquids
after anorthosite crystallization (Emslie 1978, Morse 1982, Wiebe 1992, Ashwal 1993,
Emslie et al. 1994) (evolved jotunites: Vander Auwera et al. 1998); (2) jotunites are the
parental magmas of the andesine anorthosite suite (Duchesne et al. 1974; Duchesne &
Demaiffe 1978; Demaiffe & Hertogen 1981) (primitive jotunites: Vander Auwera et al. 1998);
(3) jotunites are products of partial melting of the lower crust with necessary heat produced by
anorthosite emplacement (Duchesne et al. 1985b; 1989; Duchesne 1990); (4) jotunites are
transitional rocks in a comagmatic sequence from anorthosite to mangerite (Wilmart et al.
1989; Owens et al. 1993; Mitchell et al. 1996; Duchesne & Wilmart 1997); (5) jotunites are
derived by fractionation of mafic magmas unrelated to the anorthositic suite (Emslie 1978;
1985); (6) jotunites are immiscible liquids conjugate to mangerites (Philpotts 1981); (7)
primitive jotunites are produced by partial melting of a lower crustal gabbronoritic source
(Longhi et al. 1999) and are parent magmas of the andesine anorthosites (Vander Auwera et
al. 1998).

In the Rogaland intrusive complex (Fig. 1.3) (Michot 1960; Michot & Michot 1969),
jotunitic rocks and the products of their differentiation are particularly abundant compared to
the other anorthositic provinces. Jotunitic rocks mainly occur in a system of dykes and small
intrusions (Duchesne et al. 1985a; 1989). Some dykes are petrographically homogeneous
along strike, such as the Varberg dyke (jotunitic), the Vaersland and Orsland dykes (quartz
mangerite) and the Vettaland dyke (antiperthite norite). Others show a variation of
composition along strike, such as the Lomland dyke (from norite to mangerite), the Tellnes
dyke (from jotunite to charnockite), and the Haland dyke (from norite to quartz mangerite).

The Rogaland jotunites, first briefly described by Michot (1960), were extensively
studied by Duchesne, Demaiffe and coworkers in several papers reviewed by Duchesne
(1990). Jotunites are typically medium-grained and contain plagioclase (usually antiperthitic),
some perthitic to mesoperthitic (in the evolved facies) K-feldspar, poikilitic inverted
pigeonite, augite, Fe-Ti oxides, apatite, and quartz in the evolved facies (Duchesne 1990).
They occur mostly as dykes crosscutting massif-type anorthosites (Fig. 1.3) but those that
have been dated have similar absolute ages in the range close to 930 Ma (Schérer et al. 1996).
Among them, the Tellnes dyke in the Ana-Sira massif as well as the Varberg and Lomland
dykes in the EGOG massif (Fig. 1 3) have been studied in most detail (Duchesne et al. 1985a;
Wilmart et al. 1989). The Tellnes dyke varies continuously from jotunitic to charnockitic
lithologies. It has a well-defined Rb-Sr whole rock isochron giving the same age as the U-Pb
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zircon age and its compositional variation can be explained not by mixing but by a process of
fractional crystallization without progressive contamination (Wilmart et al. 1989). Modelling
of the fractional crystallization process was achieved in two steps by least square calculation,
the mineral compositions of the subtracted assemblages being constrained by Ford et al.
(1983) of the olivine composition and for the coexisting minerals by considering the relevant
cumulus mineral associations in the BKSK Layered Series.

Whole-rock Rb-Sr isotopic data from other dykes such as Lomland do not fit tightly to
isochrons and there is considerable variation in Ig; from dyke to dyke (0.704 - 0.710) that

does not correlate with other geochemical parameters (Demaiffe et al. 1986, Duchesne et al.
1989). There is also distinct trace element signatures from dyke to dyke: for the same major
element contents, significant variations in REE, Zr, Ba and Rb are observed (Duchesne et al.
1989; Bolle 1996). Taken together these data suggest sources with variable mineralogy and
degrees of contamination and of melting.

Jotunites also form small intrusions (Fig. 1.3) (e.g. Eia-Rekefjord), mingling facies (e.g.
in the southern part of the Apophysis of BKSK: Demaiffe 1972; Wiebe 1984; Bolle 1998), as
well as chilled margins to the Hidra and Garsaknatt leuconoritic bodies (Demaiffe & Hertogen
1981) and, locally, to the BKSK layered intrusion (Duchesne & Hertogen 1988; Wilson et al.
1996, Robins et al. 1997). One of these chilled margins, the Tjorn facies (sample 80123a of
Duchesne & Hertogen 1988), has been studied experimentally (Vander Auwera & Longhi
1994) and it has been shown that, in this composition, the near liquidus assemblages are
plagioclase (Angy) + olivine (Fogs) at 5 kb and plagioclase (Ang7) + low-Ca pyroxene (Enge) at
7 kb. Clearly the succession of cumulate rocks in the BKSK intrusion can be reasonably
accounted for by fractional crystallization ca. 5 kb of a melt similar to the Tjérn chilled liquid,
but slightly more An-rich and with a somewhat larger MgO/FeO ratio.

A liquid line of descent (LLD)

Among the Rogaland jotunites, the least differentiated compositions (high MgO, low K20)

correspond to the chilled margins and, in most variation diagrams (Fig. 4.1), they form a
group distinct from the jotunites of the dyke system (Duchesne 1990). Vander Auwera et al.
(1998) referred to the chilled margin samples as primitive jotunites and to the least
differentiated samples of the dyke trend as evolved jotunites. Using experimental data, these
authors showed that the gap between primitive and evolved jotunites only results from a lack
of exposure of an early fractionation stage which probably took place below the intrusion
level of dykes. Indeed, in variation diagrams, the gap between the primitive and evolved
jotunites is filled by experimental liquids residual to the Tjorn primitive jotunite (Vander
Auwera & Longhi 1994). Combined experimental and geochemical data have thus enabled
these authors to define a complete liquid line of descent (LLD) ranging from primitive
jotunites to evolved jotunites and then to charnockites. Modelling of this LLD supports the
hypothesis that extensive fractionation of primitive jotunites produces quartz mangerites with
REE concentrations in the range of jotunites, strong depletions in U, Th, Sr, Ti, P and smaller
to no relative depletions in Hf and Zr. Moreover, experimental and petrographic data indicate
that the FTP rocks represent accumulations of a dense oxide-apatite-pigeonite assemblage into
coexisting multisaturated jotunitic to mangeritic liquids.
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Fig. 4.1 Major element variation diagrams of the jotunitic suite (after Vander Auwera et al. 1998). Data from
fine-grained samples (chills), from the Tellnes dike (Wilmart 1988; Wilmart et al. 1989) and from other
localities {Grenville Province, Quebec: Owens et al. (1993); Laramie: Kolker & Lindsley (1989); Mitchell et al.
(1996); Nain: Wiebe (1979); Emslie et al. (1994)} are shown for comparison.
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In conclusion, the Rogaland jotunitic-charnockitic trend is the latter part of a multi-stage
process of polybaric fractional crystallization, crystal accumulation, and probably flow
differentiation within dykes. The early stage of fractionation passing from primitive jotunite
to evolved jotunitic melts is not displayed in the dyke system. It probably took place in a
chamber several kilometers below the intrusion level of dykes to produce andesine
anorthosites and layered rocks. The jotunitic dykes ranging in composition from evolved
jotunites to quartz mangerites or charnockites were also probably spawned by fractionation
either within a deeply seated anorthositic intrusion or in a layered mafic body, such as the
BKSK intrusion.

Crustal origin of the primitive jotunite

Experimental data on the liquidus equilibria in the range of 1 bar to 13 kbar relevant to the
anorthosite petrogenesis have brought new constraints on the nature of the source rocks of the
jotunite parental magmas (Longhi et al. 1999). Between 10 and 13 kbar, i.e. the pressure
conditions of a deep-seated magma chamber where Al-rich megaopx coexist with plagioclase,
the phase diagram shows a thermal barrier and the Tjorn jotunite sits close to that barrier.
Consequently, the primitive jotunite cannot be derived by fractionation of melt of an olivine-
dominated mantle and can only be produced by melting of a source rock whose composition
lies on the barrier, i.e. a gabbronoritic rock, which cannot be a mantle rock.

These experiments have constrained the composition of the source rocks. Mafic
granulites - a major component of the lower crust - have adequate average compositions,
although they greatly vary between different tectonic provinces (Rudnick & Fountain 1995).
The best candidates are layered intrusions of basaltic kindred such as the Stillwater Complex
which have higher mg-numbers than average lower crust.

Because of the thermal barrier at high pressure, mixing with silica-rich (crustal) material
has no effect on the major element chemistry of basaltic liquids. Whatever the amount of
mixing, these liquids are inexorably brought back to the ol+opx cotectic by decreasing
temperature and forced to follow it. Crustal contamination of a basaltic magma in a deep-
seated magma chamber is thus possible, especially at the radiogenic isotope level, but
fractionation does not lead to silica-rich liquids.

The acidic igneous rocks

Another main component of the AMCG suite are acidic rocks. They also occur in the
Rogaland anorthosite province. They are found in the upper part of the BKSK layered
intrusion, in the Apophysis and in the Farsundite body as well as in the small Breimyrknuten
charnockite. The Lyngdal granodiorite, formerly considered as belonging to the anorthosite
province (Falkum 1966; Pasteels et al. 1970), is nowadays preferably connected to the post-
collisional plutonism related to the Mandal Line. The granodiorite contains no opx but
hornblende + biotite + titanite and resembles the Svofjell granite, one of the Mandal Line
largest pluton (Vander Auwera et al. 1999; Bogaerts et al. 2001; Vander Auwera et al. 2001).

The BKSK upper part: C-type magmas

The upper part of the BKSK intrusion comprises mangerite, quartz mangerite and charnockite
(Duchesne & Wilmart 1997)(Table 4.1). They form a suite of K,O-rich alkali-calcic
granitoids. Their high fe-# and HFSE contents give them A-type affinities. The agpaicity
index varies between 0.87 and 0.94, thus the suite is not peralkaline but can be considered as
alkaline (Liégeois & Black 1987; Maniar & Piccoli 1989). The high abundance in K,0, TiO,,
P,0s5 and low CaO are typical of C-type magmas (Kilpatrick & Ellis 1992).
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Mangerites lie stratigraphically above the Layered Series defined by Wilson et al.
(1996) (see Figs. 3.1 and 3.2), more precisely above the transition zone marked by the
appearance of a ferrous olivine in the cumulus minerals (Michot 1960; 1965; Duchesne et al.
1987b). Geochemically they display evidence of mesoperthite accumulation (large Eu positive
anomaly, high Ba contents, low Zr contents) and must be assimilated to cumulates, capping
the MCU IV and the transition zone (see Fig. I 3.3). Quartz mangerites and charnockites form
the top of the intrusion and its most central part. They are coarse-grained and massive, with a
faint foliation, hardly visible in the field, but clearly unravelled by anisotropy measurement of
magnetic susceptibility (Bolle et al. 2000).

The petrogenesis of this rock suite has long been debated. Michot (1960; 1965)
considered they were produced by fractional crystallization together with the underlying
anorthosites, leuconorites and norites, thus giving strong evidence of a continuous evolution
from anorthosite to quartz mangerites. This concept was however questioned when isotopic
evidence of contamination by crustal material became available (see the review by Demaiffe
et al. 1986). Moreover the Layered Series was shown to result from repeated influxes of
magma (Duchesne 1972; Nielsen & Wilson 1991) and assimilation was recognized as a
constantly operating mechanism during fractional crystallization, the contaminant being
anatectic melts from country rock gneisses at the roof of the intrusion (Nielsen et al. 1996).
The granitoid rocks from the upper part were therefore considered either as the contaminated
residual liquid of the cumulate pile (Nielsen et al. 1996) or, following a suggestion of Wiebe
(1984), as the melted roof itself.

Detailed work in the Orsland area (see Itinerary 3) has suggested another scenario
(Duchesne & Wilmart 1997): the transition from mangerite cumulates to quartz mangerites
takes place in a zone of enclaves crowded with jotunite microgranular enclaves, pods and rafts
of leucogranitic material and countless gneiss xenoliths. This zone was identified by Michot
(1960; 1965) as a discontinuous “ xenolithic septum ™ at the same level of the stratigraphic
column. This enclave zone also marks a discontinuity in the evolution (Duchesne & Wilmart
1997): the quartz mangerites above that zone were less evolved than the liquid in equilibrium
with the underlying mangerite cumulates (Figs. I 3.2 and I 3.3). The later (the resident liquids)
were swept by several magmas and particularly by a new influx of less evolved magma.

Two series of liquids

Petrography and geochemistry permit to divide the granitoids into two distinct series: the
main LLD (fe# close to 0.85), which passes from jotunites through 2-pyroxene quartz
mangerites to amphibole charnockites, and the olivine trend (fe#= 0.94), which encompasses
olivine-bearing quartz mangerites and charnockites and is rooted into mangeritic liquids. Both
series are intimately mixed in the field. They evolve through fractional crystallization with
assimilation of a crustal leucogranitic component, which has been identified in fine-grained
leucogranitic enclaves, particularly abundant in the uppermost part of the massif, close to the
now eroded roof. These enclaves display very irregular shape with long dyke-like fingers
(Photo I 3.1). Curiously they have a very peculiar geochemical signature: they are strongly
depleted in incompatible elements, namely REE except Eu, which shows a huge positive
anomaly. Similar characteristics have been described in leucosomes from migmatites (Barbey
et al. 1989; Sawyer 1991; Fourcade et al. 1992; Vander Auwera 1993), which corroborates the
origin of these enclaves as migmatitic melts from the envelope.

The main LLD is similar in major elements to the Tellnes evolution up to the
charnockites. Then due to a higher water activity of 0.3, it moves to amphibole charnockites
representing a granitic eutectic with higher SiO, content (Wendlandt 1981; Ebadi & Johannes
1991). Some trace elements are however quite different than in the Tellnes trend. Rb, Cs and
Th increase much quicker here, and zircon saturates at 60-62% SiO,, earlier than in the
Tellnes trend. These differences are possibly related to the higher water fugacity and/or to the
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assimilation process. The olivine trend displays an evolution similar to that of the main LLD,
with also contamination by the same leucogranitic material. Nothing can preclude the
hypothesis that they were produced by the evolution of the resident magma in equilibrium
with the mangerite cumulates. They also contain olivine and their fe# matches the expected
values at equilibrium.

Zircons from both rock series reveal complex structures (Duchesne et al. 1987a). U-
mapping unravels U-rich cores or U-poor cores rimmed by a U-rich envelope, both within U-
poor outer shells. This points to hybridization processes and/or heritage from the source rock.

In the major replenishment event taking place before complete crystallization of the
mangerite cumulates, the resident magma was brought in close contact with the incoming
magma and partly mixed with it while preserving olivine-bearing rocks at places. The
incoming magma was more evolved than the jotunitic influx at the basis of each macrocyclic
unit. The main LLD points to a same jotunitic kindred, but its provenance is not known. The
Apophysis has been suggested as a possible feeder conduit, where a similar range of rocks is
represented and in which mingling of magmas is conspicuous (Duchesne et al. 1987a; Bolle
1998).

The Apophysis

In the Apophysis southern part, as e.g. near Fidsel (see Itinerary 4), mingling and mixing
relationships between a primitive jotunitic magma (similar to the Hidra chilled margin) and a
mangeritic melt are conspicuous (Duchesne 1989; Bolle, 1998). In the northern part of the
Apophysis, detailed mapping (Bolle 1996; 1998) has shown that the (quartz) mangeritic
magma is dominating and contains a network of elongated lenses made up of mafic-rich
jotunite that represents FTP facies. The contact zone between the Ana-Sira massif and the
envelope was therefore swept by various magmas. Moreover, these magmas have cut across
the noritic to mangeritic cumulates of the Mydland lobe, confirming an intrusive event
posterior to the cumulate formation.

Interestingly the Apophysis (quartz) mangeritic magma defines a short trend, from 58 to
66.5% Si0,, plotting in many variation diagrams close or in between the main LLD and the
olivine-trend defined in the upper part of BKSK. Is this an indication that rather than a feeder
conduit, the Apophysis could have acted as an escape conduit for the two acidic magmas
mingled at the top of the BKSK, the Apophysis (quartz) mangeritic magma resulting from the
complete mixing of part of the other two? Actually, the intermediate geochemical character of
the Apophysis (quartz) mangeritic magma compared to both trends defined in the BKSK
acidic rocks is not so systematic, and, moreover, preliminary Sr-Nd isotope data obtained on
quartz mangerites from the BKSK and the Apophysis (Bolle et al. in prep.) preclude that the
latter may have formed by mixing of the former without simultaneous, unsupported, crustal
contamination. The Apophysis (quartz) mangerite is therefore best seen as resulting from the
crystallization of a third acidic magma, preferentially intruded along the eastern contact of the
Ana-Sira massif,
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Table 4.1 Average composition of various petrographic facies in BKSK and its Apophysis (after Duchesne &
Wilmart, 1997; Bolle, 1998). AC: amphibole charnockite; OC: olivine charnockite; PQM: 2-pyroxene quartz
mangerite; OQM: olivine quartz mangerite; PM: 2-pyroxene mangerite; j: jotunite.

BKSK BKSK BKSK BKSK Apophysis Apophysis North Apophysis  South Apophyse
AC ocC PQM oQM PM PQM J (FTP facies) J (enclaves)

M G M c M c M c M G M c M c M c

(n=14) n=17) (n=15) (n=8) (n =8) (n =36) =7 n=7)
Si02 71.24 252 68.03 1.18 63.82 2.04 63.57 1.64 58.37 0.49 62.67 1.80 47.97 2.86 52.34 1.02
TiO2 0.47 0.20 0.61 0.08 1.19 0.26 0.85 0.11 1.29 0.11 0.97 0.17 3.30 0.50 3.19 0.23
Al203 12.94 0.42 13.39 0.39 13.79 0.50 14.24 0.75 15.92 0.66 15.27 0.57 11.93 0.96 13.80 0.61
Fe203 1.80 0.43 2.26 0.37 1.95 0.55 2.23 0.46 2.92 0.50 2.12 0.53 425 0.77 2.63 0.77
FeO 2.67 1.02 3.97 0.42 5.84 1.31 5.82 0.65 6.79 0.66 5.58 0.80 14.15 1.97 10.81 0.51
MnO 0.08 0.05 0.11 0.05 0.14 0.04 0.14 0.04 0.17 0.01 0.13 0.03 0.30 0.03 0.18 0.02
MgO 0.43 0.14 0.32 0.14 1.13 0.31 0.44 0.10 0.87 0.20 0.69 0.22 3.04 0.50 3.86 0.46
CaO 1.20 0.33 1.63 0.24 2.76 0.48 249 0.31 3.72 0.18 2.78 0.39 7.37 0.60 6.01 0.27
Na20 3.87 0.28 4.05 0.17 4.14 0.24 4.51 0.27 5.05 0.28 4.80 0.41 3.42 0.30 4.14 0.19
K20 5.26 0.19 5.50 0.16 4.81 0.22 5.47 0.12 4.51 0.15 4.81 0.23 1.82 0.38 2.20 0.20
P205 0.11 0.05 0.13 0.04 0.45 0.12 0.20 0.05 0.35 0.05 0.30 0.06 2.10 0.45 1.13 0.09
Total 100.07 0.52 100.00 0.64 100.02 0.56 99.95 0.34 99.97 0.43 100.13 0.53 99.66 0.52 100.44 0.25
FeO/FeO+MgO  0.86 0.03 0.93 0.03 0.84 0.02 0.93 0.01 0.89 0.02 0.89 0.03 0.82 0.02 0.74 0.03
U 1.67 0.81 1.07 0.35 1.08 0.38 0.84 0.31 0.68 0.08 0.86 0.28 0.63 0.13 0.90 0.16
Th 4.49 2.62 2.94 1.74 3.01 0.93 2.86 2.75 1.14 0.31 1.76 1.33 2.15 0.73 2.65 0.90
Pb 24.7 82 20.3 4.0 225 2.7 19.4 7.5 17.2 55 19.9 3.7 9.72 313
Zr 566 190 785 79 857 149 760 187 1141 178 1030 151 520 173 379 52
Hf 15.2 4.7 19.6 2.0 232 4.8 18.9 4.8 26.1 3.8 26.2 3.4 11.6 3.8 10.7 1.4
Nb 213 9.3 283 5.3 323 6.2 30.3 4.7 203 6.2 243 6.7 37.5 7.2
Ta 1.19 0.45 1.64 0.26 2.01 0.38 1.88 0.36 1.11 0.25 1.34 0.32 2.13 0.41 1.48 0.20
Th/U 2.5 0.5 2.6 0.8 29 0.6 3.0 1.7 1.7 0.4 2.0 0.6 34 0.7 29 0.6
Zr/Hf 359 53 41.0 5.0 373 4.4 403 34 445 3.0 39.5 4.4 44.8 3.8 352 4.1
Nb/Ta 17.8 4.0 17.6 19 16.1 14 16.2 11 18.6 3.4 17.8 19 17.7 19
Rb 152 29 135 10 103 19 117 9 59.8 89 84.2 13.8 243 6.0 28.0 9.3
Cs 0.42 0.22 0.26 0.06 0.26 0.13 0.23 0.08 0.27 0.10 0.25 0.09 0.17 0.08
Sr 90.7 21.3 80.4 9.7 177 33 110 15 257 24 190 26 359 37 359 17
Ba 639 169 741 77 831 109 1057 142 1642 190 1324 128 891 167 738 56
K/Rb 295 47 340 24 396 61 389 35 641 84 484 70 623 53 709 212
K/Ba 73.3 22.6 62.3 6.7 49.0 8.0 435 5.6 233 33 30.5 4.0 16.7 14 24.8 1.6
Sc 6.95 2.27 10.2 1.0 13.0 2.5 153 1.8 20.8 1.4
A% 39.2 10.8 259 4.9 20.7 4.1 81.0 24.2 156 16
Cr 10.9 6.4
Co 3.12 1.09 2.83 0.32 9.93 2.24 3.82 0.35 9.52 1.80 8.10 127 31.0 4.6 40.4 3.8
Ni 4.09 1.66
Zn 92.5 30.2 121 17 144 25 147 54 173 21 146 21 295 24 152 14
Ga 27.0 2.5 28.0 L7 26.5 0.8 27.1 15 26.6 1.0
La 50.5 20.6 482 11.8 66.8 11.5 50.6 30.1 46.2 5.6 55.0 10.8 83.3 3.3 45.4 4.0
Ce 110 41 108 25 153 25 118 69 105 13 119 20 202 21 109
Pr 15.1 2.1 17.3 32 30.2 2.7
Nd 60.7 9.3 71.1 7.7 75.5 12.5 133 11 68.0 5.0
Sm 15.1 9.6 14.2 2.4 18.5 32 15.2 4.7 16.7 1.7 16.9 2.6 28.1 2.9 14.9 1.3
Eu 2.71 0.76 333 0.35 3.92 0.58 4.74 0.64 6.21 1.01 5.01 0.59 6.18 0.28 4.38 0.33
Gd 16.9 2.4 17.0 3.3 28.2 4.2
Tb 1.83 0.61 1.90 0.32 2.50 0.41 2.10 0.74 2.45 0.37 2.55 0.43 3.75 0.34 2.19 0.20
Dy 135 1.6 14.7 19 19.8 19
Ho 2.83 0.38 3.13 0.40 3.89 0.41
Er 7.05 0.87 8.12 1.06 9.33 1.12
Tm 1.03 0.21 1.14 0.18 1.13 0.17
Yb 5.36 1.05 4.94 0.46 6.56 1.43 6.00 1.74 6.52 0.87 7.48 112 6.97 0.99 4.89 0.41
Lu 0.76 0.11 1.02 0.16 1.16 0.16 1.02 0.16 0.75 0.05
Y 58.7 20.8 59.6 13.2 85.8 17.1 68.6 312 77.2 8.8 84.1 114 99.7 13.2 64.0 2.5
(La/Yb)n 6.7 22 7.0 15 7.5 14 5.7 1.8 5.1 0.3 53 1.0 8.7 0.7 6.7 0.4
Eu/Eu* 0.70 0.41 0.75 0.16 0.66 0.09 1.02 0.22 1.16 0.29 091 0.14 0.69 0.07 0.90 0.05

The Breimyknuten charnockite

This relatively small body (Itinerary 4, Table I 4.1) is entirely located in the country rock
gneisses in between the Apophysis and the Hidra body. This location inside the Vardefjell
strongly migmatized zone makes it a good candidate, and the best available up to now, to
represent a product of charnockitic anatexis, triggered by the heat coming from the nearby
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intrusions. The charnockitic mineralogy and composition together with the presence of CO,-
rich fluid inclusions (Wilmart & Duchesne 1987; Wilmart et al. 1991) matches the
experimental eutectic obtained by Wendlandt (1981) under granulite facies conditions. No
other data can, as yet, corroborate that model. The relatively small volume of the body
suggests that the dry anatexis was not a very efficient process, at least at the level of final
intrusion of the anorthosites.

The Farsund charnockite

The Farsund charnockite is still unperfectly known. Rather homogeneous, it shows a

restricted range of composition (Table I 4.1). More data are needed to decide whether it is a
differentiate of a jotunitic melt or a product of charnockitic anatexis. Isotopic signature are up
to now ambiguous (Demaiffe et al. 1986)

Conclusions

Rogaland jotunites proved decisive in filling the Daly gap between basic and acidic rocks. A
continuous LLD - the Tellnes trend - has been identified with chilled melts. It is a rare case of
FC in a close system of a dry magma. Modelling by various methods was confirmed by
experimental petrology. The Tellnes trend thus appears an excellent reference to better define
the C-type granite LLD (a typology that we now prefer to A-type used by (Duchesne &
Wilmart 1997)

Starting from this relatively simple case (dry system, no contamination), we can now
better decipher the influence of assimilation and of a low activity of water on the position of
the LLD and on the behaviour of trace elements. The identification of a leucogranitic
(leucosomic) material, unexpectedly depleted in incompatible element, as a possible
contaminant can also question classical views on the effect of contamination.

The origin of the jotunite as parental to andesine anorthosite at mid-crust pressures, as
proposed long ago by Duchesne & Demaiffe (1978), is now confirmed by experiments and
modelling. This view can now be extended to massif-type andesine anorthosites at the
pressure of the deep-seated magma chamber (10-13 kb). Moreover, experimental data now
show that jotunites lie on thermal highs in the relevant phase diagrams at 10-13 kbar,
indicating that these magmas cannot be derived by fractionation of peridotitic mantle melts
but by melting of gabbronoritic sources in the lower crust at 40-50 km depths. One can now
question the capability of the underplating process to yield intermediate magma through
crustal contamination of mantle-derived magmas.
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Chapter S

THE IRON-TITANIUM DEPOSITS
(by J.C. Duchesne and H. Schiellerup)

Introduction

Numerous Fe-Ti deposits of economic or sub-economic grade occur in the Rogaland
Anorthosite Province. They include the famous world-class deposit of Tellnes, discovered in
1954 and operative since 1960, which is the second most important ilmenite deposit in
crystalline rocks after the Lake Tio deposit, Allard Lake district, Quebec. The Storgangen
deposit, which closed in 1964, is another famous mining site. Total production at the two
deposits exceeds 20 million tons of ilmenite (Force 1991). The old Bléfjell mine, active from
1863 to 1876, produced some 90,000 tons of ore. Apart from these economic deposits,
numerous smaller occurrences are found disseminated in the anorthosite massifs. Krause et al.
(1985) tabulated 23 small mines or prospects in the Ana-Sira anorthosite massif, 7 in the
Sokndal lobe of the Bjerkreim-Sokndal intrusion, and 39 in the Héland-Helleren anorthosite.
There are also disseminated ilmenite + magnetite + apatite occurrences in banded norite
horizons of the Bjerkreim-Sokndal layered intrusion and in numerous jotunite (Fe-, Ti-, P-rich
hypersthene monzodiorite) dykes and intrusions (a.o. Eia-Rekefjord massif, Lomland dyke).

Mining activity in the Rogaland province began at Kolldal, southeast of Egersund, in
1785 and reached a maximum between 1861 and 1881 in that region. After a 20 year break in
Fe-Ti oxide ore exploitation, activity moved definitively to Sokndal which became the mining
center for the Bléfjell, Storgangen and Tellnes orebodies.

Exceptional exposure, lack of a metamorphic overprint (that typically affects the North
American deposits), and a great variety of concordant and discordant occurrences, large
compositional variations and beautiful varieties of microstructures are features giving
considerable interest to the Rogaland mineralizations. It is thus not surprising that the
orebodies are cited in numerous papers and textbooks (a.o. Vogt 1893; Foslie 1928; Ramdohr
1960).

Hubaux (1956; 1960) described a large number of occurrences in the Egersund district.
He was able to distinguish variation in microtextures in the various deposits. However, his
conclusions on the genesis of Rogaland Fe-Ti deposits were strongly influenced by Michot’s
(1955; 1956) interpretation of the Norito-Granitic Zone (NGZ) located between the Egersund-
Ogna and the Haland-Helleren massifs (Fig. 5.1B). Michot (1956) suggested a metasomatic
origin for the Fe-Ti ore-bodies, which were considered to represent a mafic front in a complex
transformation of a norite. Duchesne (1970, 1973) showed that the microtextures and the
compositions of ilmenite and magnetite from the "metasomatic" bodies were quite similar to
those found in the Bjerkreim-Sokndal layered rocks as well as in other, smaller deposits far
away from the NGZ. Duchesne (1972) used trace elements to classify the deposits in a simple
magmatic sequence. He further suggested that the metasomatic hypothesis was not necessary
to account for the data. Later, new trace element data, including REE on apatite, led Roelandts
& Duchesne (1979) to propose an origin for the deposits by segregation of Fe-Ti oxide
minerals from comparable magmas at various stages of differentiation.
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Fig. 5.1. A. Schematic geological map of the Rogaland anorthosite province. Main geological units: EGOG,
Egersund-Ogna massif; HH: Hiland-Helleren massif; AS: Ana-Sira massif; H: Hidra massif; BKSK: Bjerkreim-
Sokndal intrusion; Ap: Apophysis; G: Garsaknat massif; ER: Eia-Rekefjord intrusion. Fe-Ti deposits: B:
Blafjell; F: Flordalen; FI: Fretlog; L: Laksedal; S: Storgangen; T: Tellnes; VI: Vatland. B. Schematic geological
map of the contact zone between the Egersund-Ogna and Héaland-Helleren massifs (adapted from Hubaux 1960).
Same shading as A. ZNG: Norito-granitic Zone; Fe-Ti deposits: E: Eigeroy; H: Hestnes; J: Jerneld; Ka:
Kagnuden; Ky: Kydlansvatn; R: Redemyr; Sv: Svanes.
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Table 5.1. List of deposits mentioned in this review and their location (coordinates EUREF 89 (WGS84) in zone
32VLK)

Tellnes (T) 490 690
Storgangen (S) 445 722
Bléfjell (B) 469 714
Laksedal (L) 461 688
Kydlansvatn (Ky) 325797
Kagnuden (Ka) 297 800
Rademyr (R) 284 798
Hestnes (H) 249 797
Eigeroy (E) 239799
Svanes (Sv) 270 764
Jerneld (J) 349 778
Vardésen (Va) 544 623
Flordalen (F) 447761
Vatland (V1) 346 710
Froytlog (F1) 457 736

Krause and co-workers have documented the Blafjell (Krause & Zeino-Mahmalat
1970), Storgangen (Krause & Pape 1975) and Tellnes (Gierth & Krause 1973) deposits in
great detail (Fig. 5 1). Although they were rather reluctant to propose detailed models for the
formation of the orebodies, they did suggest a connection among all the orebodies and the
Bjerkreim-Sokndal intrusion. They also invoked a complex fractional crystallization process
to give rise to the anorthosite series of rocks and orebodies (Krause & Pedall 1980; Krause et
al. 1985). Wilmart et al. (1989) showed that the relationship between the Tellnes deposit and
the associated jotunite dyke system (see below) was more complex than formerly suspected,
and ruled out a strict comagmatic origin (without contamination).

More recently, new studies have been devoted to the deposits: Schérer et al. (1996)
determined the U-Pb age of the Tellnes ore-body; Duchesne (1999) revisited some of the
typical ore-bodies; Schiellerup et al. (2000) investigated the Re-Os isotopes in several
deposits and the related anorthosites; Kullerud et al. (in prep.) produced a first interpretation
of the Titania A/S data base on the Tellnes deposit (2000 analyses for major elements and S,
Cr, V, Zr, Sr, Ni, Cu, Co, Nb, and Pb); Diot et al. (1999) studied the anisotropy of magnetic
susceptibility of the Tellnes deposit in order to better constrain its structure; many aspects on
the origin of the deposits have also been resolved by experimental petrology (Vander Auwera
& Longhi 1994; Vander Auwera et al. 1998) and theoretical considerations (Duchesne 1996).
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Table 5.2. Representative compositions of Ti and P-rich rocks from various occurrences

PUNT 75192 GNOR 8059 6482 80146D TELN STORG TJYRN

Ni(0)) 43.88 38.41 44.70 33.89 18.71 25.67 30.37 27.9 49.7
TiOp 4.44 7.38 3.59 6.82 12.27 7.88 18.40 19.6 3.63
Alp03 12.89 8.00 14.55 7.53 1.65 1.33 11.70 8.3 15.78
Fep0O3 5.13 6.00 5.34 9.25 21.79 17.63 7.25 11.7 5.00
FeO 13.20 18.19 9.52 15.68 27.80 33.20 18.10 19.2 8.37
MgO 3.94 6.11 5.33 9.15 10.06 8.01 6.13 7.0 4.44
CaO 8.76 9.94 8.87 10.00 5.23 5.20 4.39 33 6.81
NayO 3.26 1.82 3.86 1.60 A1 n.d. 2.40 n.a. 3.88
K70 1.02 0.27 0.81 0.32 n.d. n.d. 0.60 n.a. 1.05
P205 2.99 4.05 2.54 4.71 1.99 1.83 0.09 0.04 0.64
S 0.21 0.3

PUNT: average of 4 analyses of the Puntavoll facies -Lomland dyke (Duchesne et al, 1985)

75192:  Fe-Ti-P rich melanorite - Varberg dyke (Duchesne, unpublished)

GNOR: average of 38 apatite-bearing gabbronoritic cumulates of the BKSK massif (Duchesne, unpublished
and Michot, pers. comm.)

8059: melanocratic apatite gabbronoritic layer in the BKSK massif (Michot, pers.comm.)

6482: ultramafic layer - noritic transition zone Qrsland (Duchesne et al., 1987)

80146D: ultramafic layer - mangeritic transition zone @rsland (idem)

TELN:  Tellnes ilmenite norite (ore); average from Krause et al., (1985) and Force (1991)

STORG Storgangen average ilmenite norite; integrated composition from 1963 average mill feed (Force, 1991)

TJORN: typical chilled jotunite from the BKSK massif (Duchesne and Hertogen, 1988)

n.a. : not analysed; n.d.: not detected

The various Fe-Ti deposits

A first classification of the deposits into low-grade and high-grade types based on the oxide
mineral content is convenient to circumscribe the petrological problem of formation. The low-
grade type (or disseminated type) is represented by the common rocks (cumulates or liquids)
found in BKSK and the jotunite dyke system (see Chapters 3 and 4). Accumulation in a
magma chamber or direct crystallization from a jotunite melt can obviously account for their
formation. TiO, and P05 concentrations of 13% and 5% respectively (Table 5.2) are
employed here to separate high-grade from low-grade deposits. All high-grade deposits are of
magmatic origin and are discordant, that is, they form dykes, pods, veins or stockwork into
enclosing rocks. The most significant high-grade deposits will be examined here. Their
locations can be found in Fig. 5.1 and Table 5.1. The largest deposits (Tellnes, Storgangen,
Blafjell - Laksedal) are crosscutting the Ana-Sira massif, as are the Flordalen, Fraytlog and
Vardasen occurrences.
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Kydlandsvatn, Kagnuden, Redemyr, Hestnes and Eigerey are located in the Haland-Helleren
massif, close to the Norito-Granitic Zone (Fig. 5.1B). The Jerneld, Vatland and Svanes
deposits lie inside the Haland- Helleren massif. Some deposits are still rich in silicate
minerals (e.g. Storgangen, Tellnes) and there is a continuous transition towards pure oxide
minerals (e.g. Jerneld, Kydlandsvatn), or oxide minerals and apatite (e.g. Hestnes). Except for
Tellnes, which is an undeformed late dyke, and Blafjell and Laksedal, which are contained in
a pegmatitic norite crosscutting the AS massif, all deposits occur in anorthosite massifs.

A short description of each occurrence is given in the Appendix. Table 5.3 synthesizes
their main characteristics together with their possible origin, which is discussed below. The
minor and trace element contents of separated ilmenite, magnetite, and apatite are reported in

Tables 5.4-7 and illustrated in Figs. 5.2-5.

Table 5.3 - Principal characters of the Fe-Ti high-grade deposits in Rogaland.

Name Setting Rock type Oxide paragenesis Suggested origin

Tellnes (T) dyke-like intrusion in AS Homogeneous ilmenite hemo-ilmenite + cumulate enriched by crystal
anorthosite norite. Locally laminated =~ magnetite sorting in a noritic liquid

Blafjell (B) bodies in noritic pegmatite massive ilmenite hemo-ilmenite (Cr-, V-, cumulate in a noritic liquid
intruded in AS Mg-rich) + magnetite

Laksedal (L) (only in L)

Storgangen (S) concordantly layered dyke melanoritic layers in hemo-ilmenite + Cr-, V- cumulate in differentiated
intruded in AS slightly deformed layered rich magnetite sill

norite

Kydlandsvatn (Ky) strongly dipping ilmenite ilmenite layer in layered hemo-ilmenite (medium cumulate in a differentiated
lenses and layers in the contact anorthosite and in Cr, V, Mg) = sill plastically deformed by
zone between EGOG and HH  leuconorite magnetite the anorthosite emplacement

process

Vardasen (Va) elongated body associated with transitional contacts with hemo-ilmenite + same
a norite dyke the norite magnetite

Froytlog (F1) associated with a norite dyke ~ same hemo-ilmenite + traces same

of magnetite

Svanes (Sv) deformed layered body same hemo-ilmenite (medium same
intruded in HH in Cr, V, Mg)

Flordalen (F) dyke-like body in massive ilmenite containing hemo-ilmenite same

Vatland (V1) anorthosite plagioclase crystals

Redemyr I (RI) dyke intruded in HH close to oxide minerals vein hemo-ilmenite (low Cr) probably cumulate

Redemyr 1I (RII)

the contact with the NGZ
raft in the NGZ (RII) or at the

oxide-rich lenses

+ magnetite (V-rich)
ilmenite (low Cr) + Ti-

cumulate or immiscibility

Kagnuden (Ka) contact with HH magne-tite +  apatite
(medium REE)
Hestnes (H) Veins intruded in HH vein of nelsonite with ilmenite (Cr-poor) + Ti- immiscibility of a P-, Ti-,
Eigeroy (E) planar  orientation  of magne-tite + apatite Fe- rich liquid
apatite and oxide mineral ~ (REE-rich)
Jerneld (J) Veins in HH massive hemo-ilmenite hemo-ilmenite (very Cr- high temperature solid state

and Mg-rich)

segregation and recrystal-
lisation (dynamic recrystal-
lisation)
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Fig. 5.2. Composition of ilmenites from various ilmenite-rich intrusions and deposits in Rogaland in terms of
molar geikielite (MgTiOs) vs. molar endmember ilmenite (FeTiO;). Type 1 = circles. Type 2 = squares. Type 3 =
triangles. Open symbols represent electron microprobe data (Schiellerup et al., in prep.), solid symbols are
compositions determined by XRF on ilmenite separates (Duchesne, 1999). ' Tellnes ilmenite composition from
Krause et al. (1985). Type 3 compositions are generally characterized by low geikielite contents, whereas type 1
deposits have ilmenites rich in geikielite. Low-geikilite type 1 ilmenites have only been found in the Bjerkreim-
lobe of the Bjerkreim-Sokndal intrusion.

Irrespective of their relationship with enclosing rocks, the high-grade deposits can be
conveniently classified on the basis of their mineralogy and particularly their oxide
association. Three types have been defined (Duchesne 1973, 1999):

Type 1 oxide assemblage (hemo-ilmenite as the only oxide), rich in Cr, Ni, Co, Mg, is found
in Jerneld, Blafjell, Flordalen, Vatland, and Svanes;

Type 2 oxide assemblage (hemo-ilmenite + magnetite) characterizes Storgangen, Tellnes,
Bostelen, Vardasen, Kydlandsvatn and Redemyr [;

Type 3 oxide assemblage (ilmenite + Ti-magnetite + apatite) is found in Hestnes, Eigeroy,
Kagnuden and Redemyr 11, with lower Cr, Ni, Co and higher Zn contents in the oxides as well
as high REE contents in the apatite.

As pointed out by Duchesne (1973; 1999), the variations in the nature of the oxide
assemblage and in the trace element composition are indeed quite similar to the evolution in
the BKSK intrusion. The 3 types of oxide assemblages correspond to 3 successive stages of
evolution in the cumulate series (see Chapter 3). Moreover, evidence of layering are
commonly found in several deposits (Svanes, Flordalen, Vardasen, Storgangen, Bestelen and
Kydlandsvatn). In BKSK, hemo-ilmenite is the second mineral to appear on the liquidus,
subsequent only to plagioclase. Similarly, layers of pure hemo-ilmenite in anorthosite occur in
the Kydlandsvatn deposits (see locality 1.16), and a cumulate origin involving magmas, in
which ilmenite was the first mafic mineral to crystallize, is plausible. The trace element
evolution, particularly the Mg and Cr content of ilmenite, also mimics the BKSK-trend. The
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variation in MgO-content of ilmenite may be expressed by the amount of geikielite (MgTiOs3)
dissolved in ilmenite. The geikielite content decreases systematically with differentiation and,
as may be observed in Fig. 5.2, the composition of ilmenites from discordant deposits
throughout the province are correlative with ilmenite compositions in the BKSK. The trend
observed reflects similarities in origin and evolution among discordant deposits and the
BKSK. In the Bjerkreim-lobe, however, a reduced MgO content is evident, possibly due to
subsolidus reactions. The similarities point to a fractional crystallization process, with
accumulation of Fe-Ti oxides as the main controlling mechanism, to explain the variety of
deposits.

However, there do exist compositional, morphological and textural differences between
BKSK and the high-grade deposits do exist: (1) some deposits contain several mineral
assemblages side by side: Tellnes, Laksedal and Kydlandsvatn have types 1 and 2 and, in the
latter, apatite can be also present in type 2; (2) the trace element content in the deposits is
usually much higher than in BKSK: type 3 has a magnetite with much higher Cr contents (200
to 1300 ppm) than in BKSK (< 50 ppm). Type 1 such as Jerneld ilmenite is also much richer
in Cr and in MgO than in BKSK. Similarly, the REE in Hestnes and Eigeroy apatites are
higher by a factor of 3 than in BKSK;

In some cases, as in Tellnes as shown by Gierth (1983), the Cr content of ilmenite is
distinctly lower when magnetite is present in the oxide assemblage. Indication of a similar
behavior is also given here in Laksedal (compare ilmenites 78.29.1 and 78.29.2 in Table 5)
and in Kydlansvatn (ilmenite 66-182 is richer than the others). It is clear that these
distributions do not reflect mineral/melt equilibrium in which the element content is
controlled by partition coefficients with the melt, but could result from exchange of Cr
between the two oxide minerals during subsolidus evolution at high temperature. Compared
to ilmenite, magnetite, with a spinel structure, is particularly eager to concentrate Cr.

The discrepancies between the deposits and BKSK might result from the more complex
evolution of the massive anorthosites compared to BKSK. The latter is a magma chamber
evolving at a roughly constant pressure of c. 5 kb. In contrast, the massive anorthosites have
crystallized over a large interval of pressure with deformation starting in the magmatic stage
and continuing in the solid stage. Igneous textures and mineral compositions may therefore
have been modified in the solid stage (annealing texture, Ostwald ripening) at relatively high
temperature (500-1000°C). Because crystallization and deformation were synchronous, filter
press mechanisms could have expelled magmatic liquids, crystal-laden liquids, or even crystal
mushes from more rigid crystal matrixes. Hence, typical intrusive contacts, as observed in
dykes or pods, do not necessarily imply that the intruded material was liquid. It could equally
well represent an injected crystal mush or a crystal-laden liquid.
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Table 5.4. Composition of Fe-Ti oxides in selected Rogaland deposits. Analyses by XRF on minerals separated by standard methods (dense liquids and Frantz
separator). FeO calculated by charge balance. T°C , fO, (expressed as logfO,) and DFMQ (difference to FMQ buffer) by use of QUIIF equilibria (Lindsley and Frost,

1992) and program QUILF (Andersen et al. 1993). Detection limits (<): Ni: 10 ppm; SiO;: 0.01%; MnO: 10 ppm. Co in magnetite not analysed.

Jerneld Kydlandsvatn Storgangen Tellnes Rademyr | Kagnuden Hestnes Eigergy
6623 64 96 64 146 64 145 66 16 66 11 66 33 66 150

llm llm Mgt IIm Mgt lIm Mgt lIm Mgt llm Mgt lIm Mgt IIm Mgt
FeO 31.6 315 30.4 36.5 29.3 34.1 29.6 33.8 29.9 40.9 32.7 42.7 36.2 441 43.0
MnO 0.23 0.25 0.002 0.3 < 0.29 0.005 0.49 0.006 0.48 0.066 0.62 0.13 0.65 0.2
MgO 53 3.2 0.6 2.8 1.2 4.2 0.8 29 0.7 24 1.3 1.1 0.4 1.1 0.5
CaO 0.04 0.01 0.1 0.02 0.13 0.07 0.06 0.02 0.06 0.12 0.14
ZnO 0.014 0.002 0.019 0.008 0.023 0.007 0.16 0.05 0.022 0.006 0.1 0.012 0.26 0.014 0.23
Fe203 15.8 23.0 64.5 121 65.5 13.0 62.3 18.1 65.4 3.2 57.5 5.0 49.8 1.2 39.4
Aly03 0.6 0.1 0.8 0.3 0.8 0.4 1.4 1.2 0.08 29 0.1 3.2 0.02 24
V203 0.33 0.41 1.08 0.27 0.96 0.2 0.75 0.14 1.12 0.07 1.04 0.02 0.34 0.02 0.3
Cr203 0.43 0.05 0.36 0.069 1.06 0.055 1.16 0.02 0.1 0.003 0.06 < 0.019 < 0.043
TiO2 45.8 41.7 1.0 46.4 0.5 46.5 0.9 43.7 0.5 50.8 4.03 50.3 7.0 51.9 13.8
SiO2 < 0.07 0.13 0.46 0.39 0.28 < 0.26 0.02 0.38 0.52
Total 100.1 100.3 98.8 99.0 99.8 98.9 97.6 99.1 99.3 97.9 100.0 100.1 97.8 99.0 99.8
Ni (ppm) 640 200 940 170 820 140 3600 170 380 40 280 < 80 30 30
Co (ppm) 200 70 90 130 80 50 50
Hem/Usp % 18.2 24.6 1.8 12.9 1.5 14.5 2.8 18.8 1.5 3.3 12.3 5.0 21.8 1.2 41.4
T°C 595 500 557 523 548 653 493
fO. -156.3 -18.2 -17.3 -16.9 -22.5 -18.4 -27.8
DFMQ 4.8 5.6 43 5.9 -0.6 -0.1 -3.6
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Table 5.5 Compositions of some trace elements in ilmenites All elements were measured by XRF on ilmenite
separated by standard methods. MgO and MnO are expressed in wt.%, the other elements in ppm

MgO Cr,0; V203 Ni Co Ni/Co MnO Zn Rem

Storeknuten JL-5 4.40 690 1500 230 140 1.6 0.34 50 +MGT
(BKSK) JL-12 3.65 280 1500 170 130 1.3 0.36 100 id
Jerneld J 66-23 525 4300 3200 520 130 4.0 0.23 140
79-15-2 540 4500 3200 410 110 3.7 0.22 70
Blafjell B 66-62 570 2790 3000 690 170 4.1 0.24 50
66-133 320 1690 2900 180 100 1.8 0.28 160
Laksedal L 78-29-1 5.00 2700 2700 490 110 4.5 0.25 40
78-29-2 5.50 520 1900 340 100 3.4 0.32 30 +MGT
Svanes Sv 78-26-1 3.20 870 3500 170 130 1.3 0.25 140
79-21-1 4.00 870 3600 140 130 1.1 0.27 140
Kydlandsvatn Ky 64-96 3.20 500 4100 200 0.20 20 +MGT

66-182 3.70 850 4100 220 140 1.6 022 110
66-181 3.06 310 4000 120 170 0.7 0.30 80 +MGT +AP
79-19-1 3.60 300 3700 85 130 0.7 0.28 100 id

90-I 2.56 430 5000 270 160 1.7 0.23 120 id
90-J 2.68 480 5000 210 110 1.9 0.23 30 id
Tellnes T 64-145 417 550 2000 130 90 1.4 049 150 +MGT
Storgangen S 64-146 2.76 690 2700 170 70 24 0.30 80 +MGT
64-149 3.50 230 2100 190 80 24 0.33 id
Rademyr | RI 66-16 2.86 220 1400 170 130 1.3 0.34 510 +MGT
Rademyr Il Rl 66-15 1.86 100 1700 50 150 0.3 0.44 100 +MGT +AP
Kagnuden Ka 66-11 2.40 30 700 40 80 0.5 0.48 60 +MGT +AP
Hestnes H 66-33 1.07 <10 200 0 50 0.0 0.62 120 +MGT +AP
92-23D 1.50 60 700 80 60 1.3 0.55 480 id
Eigeray E 66-04 1.40 <10 700 15 60 0.3 0.73 20 +MGT +AP
66-150 1.10 4 200 30 50 0.6 0.65 140 id

Though many ambiguities sill remain, fractional crystallization with accumulation of Fe-Ti
oxides may approximately account for the Storgangen, Kydlandsvatn, Flordalen, Froytlog,
Vatland, Svanes and Tellnes deposits (obvious layering in the first three, cryptic layering of
the two oxide minerals in Storgangen, REE distribution in Tellnes indicating accumulation of
plagioclase). The Bléfjell and Laksedal ilmenite deposits are integral parts of a large mass of
norite pegmatite and most likely represent concentration of cumulus minerals in that noritic
liquid. The Jerneld deposit may have originated as a hemo-ilmenite cumulate in a transient
magma chamber, which was subsequently deformed along with its enclosing anorthosite at
high temperature during emplacement. Due to its wetting properties and ability to
recrystallize, ilmenite could have migrated in the solid state during deformation to form veins.
Considering the usually high contents in Cr and MgO in ilmenite, the parent magmas of all
these deposits were probably less evolved than that of BKSK, but they belonged to the same
kindred, with early ilmenite crystallization. The possible influence of pressure on the oxide
composition may explain the variable MgO and Cr contents, but this remains to be tested by
experimental petrology.

Immiscibility cannot be rejected as an alternative enrichment mechanism. Though the
supporting experimental evidence are currently lacking (see the discussion in Duchesne
1999), it is a convenient mechanism to generate vein deposits of almost pure material. The
Hestnes and Eigerey nelsonites probably represent the best field evidence in favor of the
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existence of such immiscible liquids. They display evolved characteristics (high REE content
in the apatite, high TiO, and Zn contents in magnetite, lower Ni/Co ratios) together with
primitive characteristics (from 190 to 1300 ppm Cr,O3; in magnetite — Table 5.6), features
difficult to reconcile with fractional crystallization.

The Kagnuden and Redemyr deposits show characteristics intermediate between the
Kydlandsvatn deposits and Hestnes-Eigeray nelsonites: hemo-ilmenite is present with (Ti-)
magnetite (type 2 association) and locally with apatite (type 3 association); the Cr content in
magnetite is comparable to Hestnes; the V content in both oxides resemble Kydlandsvatn; the
REE content in apatite is also intermediate between Kydlandsvatn and Hestnes; magnetite is
more abundant and richer in Ti in Kagnuden. It is thus hard to decide whether these deposits
were derived from an immiscibility process, such as might be the case in the Hestnes-Eigeroy
nelsonites, or were formed by a cumulus process.

Table 5.6 Compositions of some trace elements in magnetites. All elements were measured by XRF on
magnetites separated by standard methods. TiO2 and AlpO3 are expressed in wt%; the other elements in ppm.

Detection limit (<): 10 ppm MnO.

TiO2 Cr203 V203  MnO Ni  ZnO AlO;

Storeknuten JL-5 24 14600 9800 660 1080 620 2.5
(BKSK) JL-12 1.5 4100 7800 280 940 1000 1.7
Laksedal L 78-29-2 1.8 8230 9600 170 850 560 1.5
Kydlandsvatn Ky 64-96 1.0 3600 10800 20 940 190 0.8
79-19-1 3.2 2030 9700 170 460 320 1.5
90l 0.5 3100 11900 < 940 430 1.2
90J 0.5 3100 12400 < 950 200 1.0
66-181 4.2 2060 8800 210 490 180 1.1
Tellnes T 64-145 0.9 11600 7500 50 3600 1600 1.4
Storgangen S 64-146 0.5 10600 9600 < 820 230 0.8
64-149 26 2400 9600 220 850 1180 1.4
Rademyr | R1 66-16 0.5 1000 11200 60 380 220 1.2
Rademyr I Rl 66-15 3.6 730 7600 480 310 680
Kagnuden Ka 66-11 4.0 600 10400 660 280 1000 29
Hestnes H 66-33 7.0 190 3400 1300 80 2600 3.2
92-23D 7.2 950 3900 1300 50 2340 3.1
Eigeray E 66-04 14.1 1300 2700 2500 100 2000 24
66-150 13.8 430 3000 2000 30 2300 2.0
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Table 5.7 REE contents (ppm) of apatites from various Rogaland Fe-Ti deposits. Data from the BKSK intrusion
are from Roelandts and Duchesne, 1979. Analyses by ICP-MS, except 66-15 and BKSK samples by NAA
(Roelandts and Duchesne, 1979).

MCU Il MCU IVg 79.19.1 90-I 90-J 66-15 66-11 66-163 66-150 66-33 92-23D

BKSK BKSK Ky Ky Ky RII Ka Ka E H H
La 152 354 194 181 127 269 269 217 801 951 929
Ce 431 946 551 537 424 729 751 623 2236 2649 2588
Nd 504 709 487 497 400 609 608 538 1737 2108 1994
Sm 96.9 182 123 149 116 158 138 139 395 466 439
Eu 20.2 32.9 268 325 28.0 30.5 27.6 29.3 425 44.5 43.7
Gd 85 167 131 162 134 168 142 145 385 423 425
Tb 13 25 17 20 20 23 18 19 55 68 61
Dy 52 99 85 101 112 93 85 95 301 300 321
Ho 10.2 18.7 126 152 17.6 18.1 14.7 14.6 51.0 55.1 55.0
Er 21.2 42.9 33.2 394 47.2 33.8 36.3 38.7 128 142 138
Yb 11.1 241 172 213 28.9 24.7 18.8 19.5 80 83.9 83.4
Lu 1.1 23 22 2.6 3.5 21 23 25 8.7 10.4 9.2
Eu/Eu* 0.68 0.59 0.65 0.64 0.69 0.57 0.60 0.63 0.33 0.30 0.31
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Fig. 5.3 Cr, V, Mg, and Ni in ilmenites separated from the Fe-Ti deposits (see Table 5.5).
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Fig. 5.4 Cr, V, Zn, and Ni in magnetites separated from the Fe-Ti deposits (see Table 5.6).
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Fig. 5.5. Chondrite-normalized REE distribution in apatites from Fe-Ti deposits (see Table 5.7)
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APPENDIX: SHORT DESCRIPTION OF THE SIGNIFICANT DEPOSITS

Tellnes (T)

The Tellnes deposit is a sickle-shaped ilmenite-rich noritic body more than 2700 m long and,
in the central part, more than 400 m wide. It is intrusive into the AS anorthosite, as evidenced
by sharp contacts, numerous apophyses cutting the surrounding anorthosite, intrusive
breccias, and xenoliths of anorthosite. The deposit has been extensively studied by Krause and
his group (Gierth & Krause 1973; Krause et al. 1985)  The ilmenite norite orebody extends on

both ends into a jotunite dyke - called the main dyke -, which is 5 to 10 m thick and ranges in
composition from jotunite to quartz mangerite. In the south-eastern end, a zone of
interfingering of leuconoritic and mangeritic dykes makes the transition with the main dyke.
The latter cuts across the anorthosite for more than 4 km in the north west and for more than
10 km in the south west. U-Pb ages on zircon and baddeleyite from the ilmenite orebody are
920 + 3 Ma, thus slightly younger than the jotunite dyke (931 = 5 Ma) (Schirer et al. 1996).
The two intrusions are not strictly comagmatic as evidenced by differing Sr isotope initial
ratios, as well as the conspicuous difference in emplacement ages. Wilmart et al. (1989) have
discussed in detail the mechanisms by which the two intrusions can be related. Isotopically,
the ilmenite norite can be derived from the crystallization of a noritic liquid related to the
crystallization of the AS anorthosite. Liquids of appropriate compositions are, however, not
known elsewhere in the massif, and the exact nature of the parent magma to the Tellnes
deposit remains ill-defined.

The ilmenite norite is homogeneous on a large scale: euhedral plagioclase (Angs.42),
only locally slightly bent and granulated, and euhedral bronzite (En77.75) with subordinate
olivine (Fogp) are enclosed by an interstitial hemo-ilmenite (Hemj3). Fe-Ni-Co-Cu sulfides
and Ti-biotite are present in minor amounts. Apatite and magnetite occur in some facies; the
latter, showing lamellae of zinciferous spinel (sample 64-145, Tables 5.4-6, Figs. 5.2-3). It is
rich in Cr, V and Zn with the highest Cr/V ratio (1.6) and ZnO content (0.16%) in the area.
Gierth (1983) has shown that hemo-ilmenite associated with magnetite contains less Cr (250-
600 ppm) and Zn (c. 70 ppm) than ilmenite in magnetite-free samples (700-1400 ppm Cr and
c. 130 ppm Zn), an important consideration for mining methods and for petrogenetic models.
An average composition of the ore is reported in Table 2. REE and other trace elements are
given by Wilmart et al. (1989). A distinct positive Eu anomaly indicates accumulation of
excess plagioclase. Subtle variations in chemical composition have been put forward by
extensive sampling of the deposit (Kullerud et al. in prep.). Rocks along the contact and in
some apophyses are richer in modal plagioclase without significant change in the composition
of the minerals (the plagioclase goes down to An3g and the pyroxene Mg# varies from 0.77 to
0.60). Magnetite is more abundant in the upper part of the body. Apatite is slightly more
enriched along the inclined NE floor of the intrusion (Fig. 5.6).
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Fig. 5.6. A three-dimensional block model of the Tellnes ore compiled on the basis of
approximately 4900 analyses of the ore, using DATAMINE®. a) Vertical sections
showing the sampling density of drill cores. b) Horizontal section showing the
variations in the TiO,-content of the ore. Light dotted lines show the positions of
vertical sections in a), heavy dotted lines show the position of the vertical sections
given in c). ¢) Vertical sections showing the variations in the contents of TiO,, Cr,
P,0s, S and magnetite (from Kullerud et al. in prep.).

The ilmenite norite locally shows mineral lamination and lineation, well evidenced by the
study of anisotropy of magnetic susceptibility (Diot et al. 1999). These mineral orientations
are likely to be formed by the flow of the intruding material. Wilmart et al. (1989) have
suggested that the deposit and the related plagioclase-rich rocks, can be explained as sorted
cumulates, injected as a crystal mush lubricated by 3 to 10% interstitial Fe-Ti-rich silicate
liquid.

Blafjell (B) and Laksedal (L)

In the Blafjell deposit, massive bodies of hemo-ilmenite (20% Hem) (0.25% Cr203; 3.22%
MgO) (analyses of Krause & Zeino-Mahmalat 1970) occur in a pegmatitic norite close to its
contact with the enclosing AS anorthosite. Our analysis of hemo-ilmenite 66-62, separated
from a plagioclase-rich massive ore, agrees with previous determinations (Table 5.5, Fig. 5.2).
Sample 66-133 is a hemo-ilmenite (15-18% Hem) separated from a magnetite-free noritic
pegmatite (Table 5.5, Fig. 5.2). The norite pegmatite distinctly shows two oxide assemblages
(Krause & Zeino-Mahmalat 1970). In the first one, hemo-ilmenite is the only oxide mineral (>




Rogaland guidebook

2100 ppm Cr); in the second one, magnetite is present together with ilmenite and apatite (Cr
contents are very low in ilmenite and magnetite). Duchesne (1973) proposed that these
assemblages represented two stages in the fractional crystallization of noritic liquids. The
Laksedal deposit occurs in the same pegmatite body and also shows types 1 and 2 oxide
parageneses. When hemo-ilmenite is the only Fe-Ti oxide, it is rich in Cr and V (sample
78.29.1 in Table 5.5), but when accompanied by magnetite (78.29.2), hemo-ilmenite is
distinctly lower in Cr and V, and magnetite is richer in both elements (Table 5.6).

Storgangen (S)

The Storgangen orebody forms a dyke in the AS massif (4 km long, up to 50 m thick) with
numerous offshoots. The anorthosite which constitutes the hanging wall of the dyke is always
foliated concordantly with the contact. Strong foliation in the westernmost part of the
intrusion, close to the AS margin, is also evident, and accompanied by deformation and
granulation of plagioclase grains. The observations imply that the Storgangen dyke had
intruded and solidified prior to the final deformation of AS, which was possibly related to the
gravitationally induced subsidence of the neighboring Bjerkreim-Sokndal intrusion (Paludan
et al. 1994; Bolle et al. 2000). The orebody is concordantly layered on a cm to m scale, locally
with some irregularities. The layering is generally dipping in a northerly direction at an angle
of 40-60°, and is conspicuously isomodal throughout the sequence. In the westernmost
outcrops, modal layering strikes parallel to the layering in the adjacent parts of the BKSK.
The BKSK cumulates crystallized from a much larger magma chamber, where modal layering
developed sub-horizontally. The concordant and parallel behavior of the BKSK and
Storgangen layerings seem to indicate that the latter originated as a sill-like body. The
mineralogy comprises plagioclase, Ca-poor and Ca-rich pyroxene, apatite, Fe-Ti oxides, green
chromian spinel and a variety of minor sulfides, as well as baddeleyite. Cumulus Ca-rich
pyroxene is rare and only seems to be present in the uppermost part of the layered sequence.
Late entry of Ca-rich pyroxene is in accordance with up-section being equivalent to
stratigraphic up, and the hanging wall thus represents the roof of the Storgangen magma
chamber. Apatite is highly accessory but does not seem to be stratigraphically confined. The
complete section is generally rich in oxides, but the most extensive oxide-rich zones occur in
the lower half of the stratigraphy. At the footwall, the norite contains a hemo-ilmenite
(Hem;3) associated with magnetite and pleonastc spinel. The mafic mineral content decreases

somewhat upwards, and there is a systematic decrease in An content of plagioclase (Anss to
Ang3) and En content of Ca-poor pyroxene (En7s to Enee), though distinct lateral variation

exists (Krause et al. 1985, and current contribution). The MgO content of ilmenite is strongly
correlated with the En content of coexisting Ca-poor pyroxene, and ilmenite in Storgangen
evolves from 3-3.5% MgO to around 2% MgO. Strong upwards decreases in contained Cr, Ni
and Cu in the Storgangen cumulates reflect fractionation of oxides and, apparently, fractional
segregation of sulfides. In addition, Gierth (1983) observed a distinct decline in V and Zn
concentrations, the Ni/Co ratio, as well as an increase in Mn in both oxides from the base to
the top of the dyke. Cryptic layering is thus conspicuous in the dyke.

Two analyses are presented in Tables 5.5-6 and Figs 5.2-3 (64-146, 64-149). Both
samples have been obtained from the lowermost part of the intrusion. These data agree with
Gierth's: the Cr content in the magnetite is high as well as the Cr/V ratio compared to the
other occurrences.

Kydlandsvatn (Ky)

The Kydlandsvatn deposits belong to the Kolldal-Lidsen type defined by Michot (1956).
Lenticular orebodies (1 to 2 m-thick) in anorthosite are elongated parallel to the contact
between the HH and EGOG anorthosite massifs, and to the norito-granitic septum (NGZ),
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which is itself intercalated between the two massifs (Fig. 5.1B). In Liasen, the orebodies are
made up of bundles of parallel layers (up to 20 cm-thick) of massive ore, interbedded with
anorthosite, leuconorite or norite layers. All gradations between a very pure oxide ore and
noritic varieties exist. Similarly, the accompanying "gangue" rocks pass progressively from
norite to anorthosite by decreasing the amount of mafic minerals.

Although these features were interpreted by Michot (1956) as bunches of veins
emplaced in anorthosite, the layered character calls for a different explanation: the orebodies
and associated rocks accumulated from a fractionally crystallizing melt that intruded as a
concordant sill in the contact zone between the two anorthosite massifs. The strongly dipping
lamination plane (70°S), together with the frequent lenticular structures and overall
granulation and recrystallization of the plagioclase indicate that the layered sill was also
involved in the same syn-emplacement deformation as the surrounding anorthosite massif. In
the westernmost contact zone between the EGOG and HH massifs, the occurrence of a
layered sill - the Loyning sill (Fig. 5.1B) should also be noted. The Leoyning sill was injected
and deformed concordantly with the foliation of the EGOG margin (Ernst & Duchesne 1991)
(see locality 1.14). These occurrences may suggest that the marginal zones of the diapiric
anorthosite massifs contained a number of small mafic magma chambers, in which layering
could develop.

The Kydlandsvatn deposits are made up of hemo-ilmenite (Hempg) with or without Ti-
poor magnetite. When hemo-ilmenite is the only oxide mineral (sample 66-182) it shows Cr,
V and Mg contents comparable to the Svanes deposit (Fig. 5.2). A variety of ore (sample 66-
181) contains abundant apatite (up to 26 vol%) with relatively low REE content (Table 5.7;
Fig. 5.4).

Svénes (Sv)

Svanes is an irregularly deformed mass of banded and layered norite (modally graded) with
distinct lamination. It occurs in the HH anorthosite far from the contact with the EGOG
massif: hemo-ilmenite (15-18% Hem) and some droplets of sulfides are concentrated in
melanoritic layers (plag + opx =+ biotite). The layered character of the body points to an origin
as a cumulate rock in a small magma chamber inside the anorthosite mass. The structure
indicates that the intrusion was plastically deformed during the emplacement of the
anorthosite. Compared to the Kydlansvatn ore, the hemo-ilmenite is moderately enriched in
Cr but the V content is somewhat lower (small Cr/V ratio) (Table 5.5; fig. 5.2).

Rodemyr (RI and RII)

The Redemyr deposits are located in a more or less brecciated vein at the contact between the
HH massif and the NGZ. The ore is made up of hemo-ilmenite (c. 18% Hem) and Ti-poor
magnetite, rich in pleonastic spinel exsolutions, together with sulfides and independent grains
of (green) spinel. Some varieties are noritic and coarsely layered. The Cr content of hemo-
ilmenite and magnetite is low but the V content remains relatively high (Tables 5.5-6; Figs.
5.2-3).

Not far from the main vein is an apatite-bearing lens of ilmenite and Ti-magnetite
(called Redemyr II; sample 66-15), within the NGZ but close to the contact with the Héland
massif. The composition of the two oxides and the apatite is very similar to the Kagnuden
minerals.

Kagnuden (Ka)

Kaknuden is a small deposit located at the contact between the NGZ and the HH massif,
which is made up of homogeneous ilmenite (Hem 3) , Ti-magnetite (with Al-spinel exsolu-
tions), sulfides and some apatite. As in Redemyr I and II, the magnetites are Cr- poor (Table
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5.6, Fig. 5.3). The ilmenite is however less rich in V than Redemyr II (lower Hem content)
(Table 5.5, Fig. 5.2). The REE in the apatite from Kagnuden and Redemyr II are richer than
in Kolldal-Lidsen (Table 5.7; Fig. 5.4).

Hestnes (H) and Eigeroy (E)

Both deposits intruded the HH massif, close to the contact with the NGZ. The ore bodies are
made up of almost equal quantities of oxide minerals and apatite with insignificant amounts
of silicates. The deposits may thus be classified as nelsonites. A recent factory building now
covers the Eigeray deposit. The Hestnes vein comprises several varieties of ore defined by the
grain size of apatite and magnetite (apatite may vary from 0.5 mm to 5 mm in length,
magnetite locally coalesces into 1-2 cm long and 2-4 mm wide "platy" grains), on the apatite
content (from 0 - c. 50%), and on the structure of the ore (homogeneous with oriented
euhedral apatite or grain size- or modally-layered on a cm to dm scale). The main oxide
mineral is an Al-spinel- and Ti-rich magnetite (c. 7% TiO; in Hestnes, c. 14% TiO; in
Eigeroy) with subordinate amounts of homogeneous ilmenite (Tables 5.4-6, Figs 5.2-3). The
ilmenites are Cr- and V-poor in the two deposits. The Eigeroy and Hestnes magnetites are
quite rich in Cr (c. 1300-190 ppm) compared to the Kagnuden and Redemyr II magnetites (<
c. 600-730 ppm). Apatites in both deposits are REE-rich with large negative Eu anomalies
(Table 5. 7; Fig. 5.4). Sulfides are remarkably abundant in the coarse-grained magnetite
variety.

Jerneld (J)

The Jerneld deposit consists of several dykes and veins, cutting across the HH anorthosite, far
away from the contacts of the massif. The orebodies are made up of coarse-grained hemo-
ilmenite (18% Hem) with traces of green spinel and sulfides (predominantly pyrite). Except
for rare blebs of plagioclase, the ore is massive and very pure. It displays sharp contacts with
the enclosing anorthosite, which is completely devoid of oxide minerals. No magnetite was
ever found in this deposit. The hemo-ilmenite shows relatively high contents in V (c. 3200
ppm), the highest amount of Cr (c. 4500 ppm) in the province, high MgO (~5.3%) and Ni
(400-500 ppm) contents, as well as a high Ni/Co ratio (Tables 5.4-5; Fig. 5.2).

Vardasen (Va)

The Vardésen deposit is located close to the eastern margin of the AS anorthosite. Vardasen is
an elongated body of almost pure ilmenite associated with a north-south striking norite dyke.
The contact between the norite and the ilmenite body is transitional, and the relationship is
most adequately explained by fractionation processes in a common magma. The norite is
poorly layered and consists of plagioclase, ilmenite and Ca-poor pyroxene. Magnetite can be
locally present, whereas chromium-rich green spinel is abundant in the ilmenite-rich rock.
The Vardésen ilmenites are very magnesian containing 5.4% MgO.

Flordalen (F)

The Flordalen deposits consist of two essentially bi-mineralic occurrences (Florklev and Store
Algard gruber) carrying plagioclase in addition to ilmenite. The two deposits are found in a
dyke striking northwest-southeast through the Ana-Sira anorthosite. The width of the dyke is
up to 15 m but contact relations are ambiguous and the dyke is poorly exposed apart from the
sites of former activity. The mineralogy is composed of hemo-ilmenite (4.2-4.8% MgO), with
coarse grained hematite exsolutions, and plagioclase, as well as minor amounts of green
spinel and occasionally biotite and Ca-poor pyroxene. Texturally, ilmenite is thoroughly
equilibrated, forming polygonal aggregates surrounding dispersed euhedral and undeformed
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plagioclase grains. The dyke is characterized by an irregular modal layering into plagioclase
and oxide-rich layers and lenses. The Flordalen dyke extends for several hundred m and do
not qualify as a stable magma chamber within the massive anorthosite. However, the
composition and irregular modal layering imply that the dyke most likely did form as a
cumulate, possibly fractionating from magma moving along a structural weakness.

Vatland (V1)

The Vatland deposit is located in the southeastern part of the Haland-Helleren anorthosite.
The deposit may be described as a set of veins and dykes, compositionally ranging from pure
ilmenite to ilmenite-rich anorthosite. The veins and dykes are from few cm to 1.5 m thick, and
have been mined at least three sites over a distance of 200 m in a north-south direction. The
dykes are either made up by massive ilmenite or by euhedral plagioclase phenocrysts
suspended in an ilmenite matrix. The ilmenite is Mg-rich containing in excess of 4% MgO,
and appears to be similar to the Flordalen deposits in the Ana-Sira anorthosite.

Froytlog (FI)

Froytlog is another small ilmenite occurrence associated with a noritic dyke. Generally the
mineralogy is made up of hemo-ilmenite, plagioclase and Ca-poor pyroxene, though dispersed
grains of magnetite also seem to be present. The ilmenite contains around 4% MgO. The dyke
is layered with ilmenite concentrated in cm to dm thick layers.

skoksk
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Part 11

Itineraries
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Rogaland Vest-Agder

Fig. I 1.0. Itineraries in the Rogaland anorthosite Province
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Itinerary 1

THE EGERSUND OGNA MASSIF
(by J.C. Duchesne, J. Vander Auwera, H. Diot, H. Schiellerup and R. Maquil)

The Egersund-Ogna massif is the main topic of this itinerary (Fig. I 1.1). The localities will
show various field relationships illustrating its characteristics and demonstrating its
emplacement mechanism. En route outcrops of dyke rocks (jotunite, norite or dolerite) will
also be visited, as well as remarkable features of the neighbouring units, particularly an
ilmenite deposit.

Fig. I 1.1. Itinerary 1 on a schematic geological map of the EGOG massif and its neighbouring
massifs Bjerkreim-Sokndal (BKSK) and Haland-Helleren (HH) anorthosite massifs. Figures
refer to the stop numbers.

From Moi, take road E39 (E18) to the north. After driving through the Drangsdalen, the road
enters the Bjerkreim-Sokndal layered intrusion at Eide. Follow the road through Helleland,
then at Krossmoen, take to the left road 9 to Egersund.
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Locality 1.1 (1212.2; LK298-900) NESE: THE EGERSUND ANORTHOSITE AND THE
LOMLAND DYKE

Road-cut along road 9, at the Klungland bridge over the railway.

- Pinkish to violet, medium-grained anorthosite with some coarser, ill-defined phenocrysts
of plagioclase of the same composition as the matrix plagioclase.

- Cutting across the anorthosite, the Lomland dyke of jotunitic to monzonitic composition,
which extends over more than 25 km across the Egersund-Ogna massif and its neighbours,
the Héland and the Bjerkreim-Sokndal massifs. Fine-grained inclusions and chilled
margins. The rock represents the Klungland type (see Duchesne et al. 1985a; 1989), which
characterizes the north part of the dyke and contrasts with the Puntavoll type, more noritic
(FTP), which occurs in the southern part of the dyke.

Take the road to the Egersund railway station then along road 40 to next point.

Locality 1.2 (1211.1; LK163-867) PIGGSTEIN: THE ANORTHOSITIC-NORITIC
COMPLEX.

Stop the car at the boundary of the Egersund District (15 km from Egersund city). Walk over
the hills, due north, and follow the district boundary.

- Typical coarse-grained anorthosite, usually weathered, from the central part of the massif,
with lenses of leuconorite, megacrysts of orthopyroxene and locally veinlets of hemo-
ilmenite.

- On the W side of the valley between the two ponds (Piggsteintjorni and Auratjorni), the
outcrops beautifully display the anorthositic-noritic complex. Aggregates of megacrysts of
plagioclase (up to 30 cm in length, labradorescent, granulated) forming anorthositic lenses,
and of megacrysts of Al-rich opx and plagioclases in sub-ophitic texture (leuconoritic
lenses) are embedded in a matrix of finer-grained leuconorite (without opaque minerals), in
which the opx display an interstitial “ cuspate ” structure. The aggregates from 2 to 10 m in
size are elongated parallel to a plane which also corresponds to a rough orientation of the
plagioclase network in the matrix. Rapid variation in grain size of the matrix leuconorite
can be observed locally. Some of the leuconoritic aggregates display a recrystallized
medium-grained sugar-like texture with granulated and stretched opx. Such texture is
transitional to that of leuconoritic gneisses of the marginal zone of the massif.

This outcrop beautifully illustrates the polybaric evolution of the anorthosite. The megacryst
aggregates were formed at high pressure (the high Al content of the opx megacrysts indicate
11 to 13 kb) and rose diapicrically in a leuconorite to anorthosite crystal mush lubricated by
some leuconorite melt (with Al-poor opx, also Cr poor). The occurrence of deformed and
recrystallized inclusions suggests that the deformation took place before the end of the
intrusive process and was thus synintrusive.

A short walk SW leads to a small body of brownish leuconorite with a typical fine-grained
granular texture and some layering (pyroxene layers), outcropping on the W flank of a small
hill. At the roof of the intrusion, several mushrooms of leuconorite penetrate the anorthosite
(gravity instabilities) with an ill-defined gneissic texture; clusters of plagioclases constitute
small inclusions in the norite. Sulfides (pyrrhotite and pyrite) are concentrated in a pyroxene
layer at the wall of the intrusion.
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Table I 1.1. Chemical compositions of various rocks from the Egersund-Ogna massif.

Analyse 1 2 3 4 5 6 7 8 9 10 11 12 13
Si02 53.61 47.63 53.70 53.23 52.67 4826 51.11 53.28 49.01 50.00 48.21 51.00 54.47
Ti02 0.11 545 031 101 211 474 130 0.17 030 038 030 0.12 0.09
Al203 24.84 15.75 17.75 18.41 18.08 1548 16.48 22.97 2495 25.23 21.07 24.36 27.85
Fe203 1.17 404 518 230 271 433 252 114 199 104 194 225 037
FeO 148 1031 453 582 747 1052 882 351 287 286 549 251 ND
MnO 0.07 015 0.14 013 013 0.15 0.18 0.18 0.04 0.06 0.09 0.07 0.01
MgO 346 6.67 687 682 439 471 737 561 549 539 927 517 022
CaO 10.04 533 694 7.84 803 734 9.02 934 10.76 10.97 9.64 10.79 11.39
Na20 480 412 387 4.17 448 378 342 410 351 298 273 342 499
K20 035 061 068 074 079 065 037 025 027 032 043 026 041
P205 0.02 006 002 007 011 0.12 0.19 0.03 0.08 0.09 0.06 0.03 0.05
Total 99.95 100.12 99.99 100.54 100.97 100.08 100.78 100.58 99.27 99.32 99.23 99.98 99.85

Sample location and description

1. RMPIG - Piggstein (see loc. 1.2) — Coarse-grained leuconorite of the anorthosito-noritic complex (average
of analyses RM79.205, RM79.204.1 and 2)

RM?78.63 - id. — Fine-grained norite in stockwork

RM79.115 - S.Revtja - Noritic pegmatite (without Fe-Ti oxides) (dykes)
RM79.108 — Ystebrod - Noritic pegmatite (without Fe-Ti oxides) (dykes)
JCD79.10 — Holmevatn - Fine-grained antiperthitic norite (dyke)
JCD79.33 — Revtja - Antiperthitic norite (dyke)

JCD79.14 — Saglandsvatn (E18) (see loc. 1.13) - Granular norite (dyke)
RM?77.66.16 - id - Foliated leuconorite

. JCD64.100 — Krossheim (see loc. 1.12) - Foliated leucotroctolite

10. JCD66.67 - id. Foliated leuconorite

11. JCD66.46 — Kydlandsvatn - Foliated leucotroctolite (se loc. 1.16)

12. RM78.124 — Sirevag - sugar-like leuconorite (inclusion)

13. JCDO00-35 —Serskog - Labradorescent anorthosite (Ansy) (see loc. 1.6)

N R R R

Walk down to the road (parking place ) and back to the starting point. Road-cuts display
typical coarse-grained, granulated, locally labradorescent anorthosite in which some
interstitial opx megacrysts can be observed. Good samples can be found in the embankment
of the road. Proceed along road 40 to the North.

Locality 1.3 (1211.1; LK157-875) KALVSHAGEN CENTRAL ANORTHOSITE

(see P. Michot, 1960, point I.B, p.27)

Small abandoned quarry on the right side of the road on top of a small gradient; numerous
drill holes in rock and minerals.

- Typical aggregates of granulated, labradorescent, phenocrysts of plagioclase with
interstitial megacrysts of Al-rich opx with plagioclase exsolutions (visible with the naked
eye), some hemo-ilmenite grains.

The labradorescent plagioclase (Boggild intergrowth) have the following chemical characters:
CaO =11.1% (i.e. An = 55% wt%; K,O = 0.33%; Sr = 950 ppm; Ba = 62 ppm; Ti = 580 ppm
and Rb = 1.3 ppm). Its Sr isotopic ratio is 0.7029 (Demaiffe, pers. comm.). An analysis of the
opx megacryst 66.119 is given Table 2.1, anal. 1 and is plotted on Fig. 2.2. NO SAMPLING,
PLEASE (sampling is possible at Locality 1.2).
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Proceed along road 40 to Brusand, via Ogna. At Brusand, take to the right a gravel road to
Brusali and proceed to Haugsenga.

Locality 1.4 (1211.1; LK122-965) W. HAUGSENGA: THE GNEISSIC MARGIN (I)

(see P. Michot 1960, point l.e, p.27).

Stop at the outbuildings of the Haugsenga farm (a few hundred m. south of the main farm).
Walk N60E following the tops of the hill towards summit 182 m.

- Leuconoritic and anorthositic gneisses of the inner border of the massif in various stages of
deformation and recrystallization. Conformity of the foliation and the place of chemical
layering. Megacrysts of Al-opx forming hyge (several metre long) aggregates with
plagioclases. Some mega-opx display well-preserved undeformed cores. A variety of
deformational textures including granulations, kinkings, granoblastic zones. In less
deformed parts the structure can be compared to what is observed at Piggstein (Locality
1.2).

- Dykes of pegmatitic norite, discordant on the general foliation and locally foliated.

- Dykes of undeformed jotunite (N.Rudla) and quartz-norite, with inclusions of quartzo-
feldspathic gneisses from the envelope (N.Hogeli).

From Haugsenga, go back to the first crossing and take to the left. At the next crossing, take
to the right, to Heresvela.

Locality 1.5 (1212.2 ; 1.K174-949) THE HOMSEVATNET SULFIDE DEPOSIT

At the Heresvela farms, take a gravel road to the East. South of Revtja pound, take to the left
up to a private parking place. Walk the path to the summer houses along the eastern
Hellevatn, then walk uphill.

The Homsevatnet sulfide deposit is located in the north-central part of the Egersund-Ogna
anorthosite about 12 km north-northwest of Egersund (Fig. I 1.1) and is the most significant
sulfide deposit in the province. Exploitation took place during the early 1870's (Larsen 1931).
A number of small and possibly related occurrences have been found in an elongated area
covering 2 to 3 km” around Bjerndalsnipa and Ualand, south of the Homsevatnet deposit
(Stadheim 1968, Hovland 1975). Mining operations have left a 10-15 m long and 4 m wide
incision in the anorthosite host and an 8 m deep shaft sunk into the main sulfide ore (Richter
1943). The shaft is now filled with water.

The deposit is situated within massive anorthosite well away from the foliated and deformed
margin of the body. The main occurrence at Homsevatnet and the local geology are shown on
Fig. I 1.2. The sulfides occur within a norite pegmatite intrusive into the Egersund-Ogna
anorthosite (Henriette 1984).The pegmatite is characterized by numerous metre-sized
subangular anorthosite enclaves forming a complex zone with interconnected xenoliths. The
grain size varies, and the norite is not universally pegmatitic, and contacts with the
surrounding anorthosite may be either sharp or diffuse. The pegmatite consists of equigranular
crystals of plagioclase, 3-5 cm in diameter, and a composition of Ango.43 (965 ppm Sr; 400
ppm Ba) kinked and bent orthopyroxene (Ens;_sg; 2.7-3.6 %Al,03; 70-120 ppm Cr) as well as
abundant and large poikilitic grains of hemo-ilmenite (Hemy) and magnetite (Henriette
1984).

A fine grained gabbronoritic dyke striking NW-SE is also present in the Homsevatnet area.
The dyke cuts across both the anorthosite and norite pegmatite, but no contacts with the
sulfides have been observed. The gabbronorite consists of granulated equigranular ~1 mm
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plagioclase (Ansy) and oriented subhedral orthopyroxene (EnssFsssWo;) of similar size. The
amount of clinopyroxene (Wos4EnscFsy) is somewhat smaller than that of orthopyroxene, and
the dyke also contains small amounts of hemo-ilmenite (Hem,) (Henriette 1984). The dyke
represents the youngest magmatic event in the area.

Homsevatnet Deposit
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Fig. I 1.2. Geological map of the Homsevatnet sulfide deposit in the EGOG anorthosite.

The main sulfides are found in massive form as a m-sized dyke-like or lenticular body, whose
primary outline and characteristics have been obscured by exploitation. The sulfides are
dominated by 2-5 cm large subhedral grains of pyrrhotite. Large pyrrhotites are often twinned
or kinked in response to stress, implying that sulfide deposition (and formation of mono-
sulfide solid solution (mss)) took place prior to the final emplacement of the anorthosite. A
Ti-magnetite (with rare ilmenite lamellae and rims) is also present and was most likely the
first phase to precipitate from the sulfide melt. Pyrite is a subordinate phase and appears as
sub- to euhedral 0.5 mm grains, generally in elongated aggregates along grain boundaries of
larger pyrrhotite grains. These pyrites are often enveloped by chalcopyrite. Early pentlandite
forms larger (~1 mm) grains or aggregates included in pyrrhotite along cracks or grain
boundaries. A later generation of pyrrhotite is found in veins transecting both the early
pyrrhotite phenocrysts and the chalcopyrite. The Homsevatnet deposit is zoned with a central
massive pyrrhotite-dominated ore surrounded by a marginal disseminated or stringer-type ore
dominated by chalcopyrite. Sulfide-filled stringers and fractures in silicate grains surrounding
the ore bodies are almost universally monomineralic, consisting entirely of chalcopyrite. This
mode of occurrence does not seem to be consistent with an origin of chalcopyrite exclusively
by exsolution from a homogeneous monosulfide solid solution (mss) but requires that the
marginal chalcopyrite-dominated ore crystallized from a copper-enriched sulfide melt. In this

82



Rogaland guidebook

respect the Homsevatnet deposit is a small scale representative of world class magmatic
sulfide systems such as Noril'sk and Sudbury where marginal "breccia matrix ore" or
"footwall" orebodies are similarly enriched in Cu (Schiellerup et al. in prep.).

Subsequently, the pentlandite grains were almost completely replaced by violarite, in rare
cases leaving small equant grains of pentlandite embedded in violarite (Photo I 1.1). Incipient
alteration of pyrrhotite along cleavage and grain boundaries is conspicuous, the alteration
products most likely being the magnetic monoclinic pyrrhotite also detected by XRD. Later
dissolution along cracks led to the formation of goethite veins transecting all ore minerals and,
to a lesser extent, veins filled with fine-grained marcasite and pyrite aggregates.

Photo I 1.1. Sulfide sample from the
Homsevatnet deposit showing pyrrhotite
 (po) partly embedding violarite (viol).
The violarite grains contain small angular
relicts of pentlandite (pn). Exsolved
chalcopyrite forms along pyrrhotite grain
i boundaries and is, in this section,
transected by a late goethite-filled crack.
. Displayed section is 0.5 mm wide.

The primary sulfide paragenesis consisting of pyrrhotite, pentlandite, chalcopyrite and
subsidiary amounts of pyrite is conspicuously magmatic in character and a hydrothermal
origin is very unlikely. Average Cu, Ni and Co contents of the sulfides are 0.7, 0.7 and 0.15%,
respectively (Henriette 1984; Schiellerup et al. in prep.). Pt is <4.3 ppb and Pd ranges from 3
to 9 ppb (Schiellerup et al. in prep.).

The massive sulfide contains several types of inclusions (Henriette 1984): (1) equal sized
granoblastic anorthosite inclusions (also found in the noritic pegmatite). The plagioclase has a
composition (Ansg, 834 ppm Sr, 111 ppm Ba) similar to high pressure plagioclase megacrysts
(see Fig. 2.6); (2) 1-3 cm sized plagioclase phenocrysts: Ansg.4o with c. 800 ppm Sr and c¢. 350
ppm Ba, similar to plagioclase from the noritic pegmatite; (3) opx mega-phenocrysts
(undeformed) chemically similar to the pegmatite pyroxene; (4) “ocellar” aggregates of
interfingered opx (EnsgFssoWos3) and cpx (from WossEnseFss; to WossEnszsFsy)), with
interstitial plagioclase and homogeneous ilmenite (<Hemg) and some sulfides. Similarities in
composition between the plagioclase and opx phenocrysts included in the sulfide and the
same minerals in the norite pegmatite point to an origin of the sulfide as an immiscible liquid
in the norite pegmatite. On the other hand, the ocellar pyroxenite cannot have crystallized
from an immiscible silicate melt in the sulfide liquid, as the rounded shape would suggest,
because it contains ilmenite and not Ti-magnetite as is the case in the sulfide. Equilibrium
between two immiscible melts indeed requires crystallization of identical phases in the two
melts. The most likely mechanism of formation of these ocellar pyroxenite is thus fractional
crystallization from the sulfide melt itself (Henriette 1984).

Re-Os isotopes and R-factor modeling of trace elements suggest that an external source of
sulfur is not required. The sulfide occurrences most likely result from the differentiation of
primary, relatively sulfur-rich silicate magmas (Schiellerup et al. in prep.). The isochronous
relationships recorded between anorthosites, mafic rocks, Fe-Ti ore deposits and sulfides, as
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discussed by (Schiellerup et al. 2000), imply that the sulfides and their host intrusions were
derived from sources of similar composition. Os and Nd isotopic modeling give strong
indications that the sulfides, as well as the unmineralised anorthosites and norites, are
primarily crustal derivatives (Schiellerup et al. 2000).

Back to Brusand, then take road 40 towards Egersund. Circa 400 m. before the bridge over the
railway at Sirevég, take a gravel road to the left.

Locality 1.6 (1212.3 ; LK161-895) SORSKOG : DIMENSION STONE QUARRY

Take a gravel road from Serskog farms to the East (private road) and climb up to a quarry in
operation.

- Beautiful exposures of anorthosite and leuconorite showing 3-5 cm iridescent zoned
plagioclase with blue and green colors (Anss). Small opx megacrysts.

- Fine-grained dolerite dykes related to the Egersund dyke swarm.

Back to road 40 towards Egersund. Circa 500 m. past the bridge over the railway at Sirevég,
take a gravel road to the right and follow the indication to a “Krigsminne” (war monument).

Locality 1.7 (1211.1; [K133-891) VETEN: GNEISSIC INCLUSIONS IN THE
ANORTHOSITE (I)

Stop at the parking place of the* Krigsminne ” of Veten and walk on top of the hills, around
second world war fortifications.

- Typical medium-sized equigranular pinkish anorthosite, with rare phenoclasts of
plagioclase, containing various metre-sized inclusions of anorthositic to leuconoritic,
granoblastic (sugar-like) gneisses, tilted in all orientations.

Back to Egersund by road 40. En route, at the end of Hellvik pool, overview from the road on
a “ White Stone ” quarry - altered anorthosite (kaolinitization). At about the Egersund railway
station, after crossing the bridge, take to the right the road to Ystebrad.

Locality 1.8 (1211.1; LK216-846) STIGEL: VETTALAND DYKE

- The dyke is crossed by the road. It has a granular texture and a quartz noritic composition.
Though its major element composition is very similar to the rest of the dyke, the trace
element composition is frankly different: here the dyke displays the Eigerdy type
(depletion in large ion lithophile elements, bell-shaped REE distribution with a positive Eu
anomaly) (Duchesne et al. 1985b; 1989)).

Follow the road to the end, then a small path southward.

Locality 1.9 (1211.1: LK195-815-191 810) YSTEBR@D: NORITIC PEGMATITE AND
GNEISSIC INCLUSIONS (1I).

(See P. Michot 1960, Point I.B, P.27)

- The path cuts across a stockwork of noritic pegmatites (with Fe-Ti oxides), forming dykes
with sharp contacts with the anorthosite and extending over the entire northern side of the
bay. Two types of opx and plagioclases can be distinguished in the field: (1) small opx
megacryst (up to 10 cm) with plagioclase exsolutions, locally kinked and granulated,
coexisting with large plagioclases, usually irregularly granulated; (2) oikocrysts of Al-poor
opx (up to 10 cm in diameter) containing small euhedral, locally undeformed plagioclases.
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Ilmenite can also form smaller oikocrysts. Our interpretation is that the intruded material
consists in aggregates of plagioclase and opx megacrysts formed at a higher pressure and
lubricated by a noritic melt which crystallises in the interstices to form oikocrysts
(Duchesne 1984).

Some of the blocky inclusions are obviously xenolithic (see below) and have been carried in
the noritic pegmatite. This raises the possibility that all blocky anorthosites might be
inclusions in the norite pegmatite (Robins, pers. comm.).

- Further south, on the other side of the bay, several large xenoliths of anorthositic and
leuconoritic banded gneisses, tilted in various positions, are embedded in the noritic
pegmatite. The inclusions are similar in texture and plagioclase geochemistry (Fig. 2.6) to
the leuconoritic gneisses of the margin of the massif (Duchesne & Maquil 1981). A small
vein of anorthositic material is injected across an inclusion and merges into noritic
pegmatite.

Photo I 1.2. Blocky inclusion of leuconoritic banded gneiss embedded in noritic pegmatite. Ystebred, locality
1.9.

Note that the tilted inclusions were good evidence for Michot (1960) of an igneous origin of
the anorthosite in contrast with the metasomatic views of that period) and also of the existence
of an old anorthosite basement, rejuvenated by leuconoritic anatexis. These inclusions are
now interpreted as fragments of the deformed margin of the massif (due to syn-emplacement
deformation) (Maquil & Duchesne 1984).

Back to Egersund.
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Locality 1.10 (1211.1; LK245-828) VARBERGKAIEN: THE VARBERG DYKE

In the town centre take the Strandgata (street) to the mouth of the harbour. Behind the
Customs building along the Varbergkaien, the road cut exposes the Varberg dyke. This is ca.
150m thick, dipping 60 W and is typical jotunite (with large poikilocrysts of opx of about 1
cm in diameter) (Duchesne et al. 1985b; 1989). Fine-grained chilled margin (also with
poikilocrysts of opx!) of 5-10 cm thick can be found at the wall of the dyke. At the roof of the
dyke, a satellite dykelet (50 cm thick) also of fine-grained jotunite is present.

Back to centre of town. Take road 9 northward.

Locality 1.11 (1212.2; LK281 895) SLEVELAND: DOLERITIC DYKE

Just opposite the entrance of the gravel road to Sleveland’s farm is a doleritic dyke ca.lm
thick, with aphanitic (vitrous margins). It belongs to the Egersund WNW-ESE dolerite dyke
system (Bingen et al. 1998).

Proceed along road 9 towards the junction with road E39 (E18).

Locality 1.12 (1212.2; L. K293-935) KROSSMOEN: THE GNESSIC MARGIN (1II)

Last road-cut on the left before the junction with road E39 (E18).

Typical leuconoritic gneisses, with some leucotroctolitic layers (Fo;g + Ang;) (difficult to
identify without a microscope) from the marginal deformed zone of the Egersund-Ogna
massif. Some discontinuous layers of recrystallized opx, locally with preserved cores.

The plagioclases of the gneisses of this outcrop are amongst the highest in anorthite content
found in the massif (up to Anyy); they are low in Sr (350-450 ppm), K,O (<0.1-0.3%), Ba
(<100 ppm) and Rb (< 0.5 ppm) (see Fig. 2.5 (Duchesne 1967; Duchesne & Demaiffe 1978)).
The *’St/*°Sr initial ratio is 0.7040 (Duchesne & Demaiffe 1978).

Proceed along road E39 (E18) to the North.

Locality 1.13 (1212.2; L. K293-935) SAGLANDSVATN: THE GNEISSIC MARGIN (II1).

Spectacular road-cut along Saglandsvatn (about 3 km north of the preceding locality) showing
on both sides of the road coarse-grained leuconoritic gneisses. Giant opx stretched along the
foliation plane (80°E) over distances up to tens of metres. Various degrees of deformation of
the opx can be observed: (nearly) undeformed cores, kinkings, granulated zones,
recrystallized granoblastic lenses and layers.

The anorthosite content of the plagioclases varies between Angy and Anyg (Fig. 2.5). As in the
preceding outcrop, the Sr content is remarkably low (ca 380 ppm) as well as K,O (0.16-
0.40%) and Ba (<20 ppm-75 ppm).

The opx varies between Enyy and Eng. (Fig. 2.2) and the Al content between 1.5 and 3.0%
Al,O3, the more recrystallized varieties tending to have the lowest Al contents (Maquil and
Duchesne 1984). Undeformed cores still show plagioclase exsolutions and have a bulk Al-
content of about 5.5% Al,Os; (see Table 1.1 and Fig. 2.3). The transition trace element
contents are similar to those from opx megacrysts from the central part of the massif, except
for Cr which is definitely higher in the opx from the margin (Figs. 2.3-4).
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Photo I 1.3 Leuconoritic foliated margin of the EGOG
massif. Road E39, locality 1.13.

Back to Egersund.

Locality 1.14 (1212.2; LK218-802) THE LOYNING LAYERED SILL

At the Egersund railway station, take the road to the Eigereya island, cross the bridge and
immediately after take to the left. After 2.8 km take the small road to the right up to Leyning.
After the farms, walk along a path down to the seashore.

The small Loyning body (1.5 km x 200 m) is a layered sill, intruded in the contact zone
between the southern foliated margin of the Egersund-Ogna anorthosite and the Haland
anorthosite (Ernst 1990; Ernst & Duchesne 1991) (Fig. I 1.3). The contacts between the
Loyning body and the enclosing anorthosite are sharp and concordant. The layering dips 70°S
and, as indicated by small-scale modally graded layers, the body is slightly overturned. The
body is made up of two units: a lower layered mafic to ultramafic unit and an upper more
massive leuconoritic unit. The Lower Unit is composed of norites, melanorites as well as of a
minor amount of pyroxenites occurring as dm to pluri dm-thick layers. An olivine-bearing
melanorite has also been recognized close to the southern contact. The Upper Unit is made of
a relatively homogeneous leuconorite. Several anorthositic to leuconoritic dykes originating
from the Upper Unit crosscut the anorthosite (Duchesne et al. 1991). Rocks of the two units
are fine-grained and the contact between both Units is progressive. Field and petrographic
evidence suggest that the Loyning body has been deeply deformed: a lineation is locally
present.. Mineral compositions display a modest variation from base to top: Anse to Ansg for
plagioclase, Fogs to Fogs for olivine, Mg#68 to 58 for orthopyroxene, Hem>18 to < 9 for
ilmenite (Ernst 1990). In thin section, orthopyroxene and plagioclase are usually

87



Rogaland guidebook

hypidiomorphic whereas ilmenite and clinopyroxene are interstitial. The texture is
granoblastic. Mineral compositions and modal abundances suggest that the parent magma of
the Loyning body is close to a primitive jotunite (Vander Auwera et al. 1998).
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Fig. I 1.3. Geological map of the Layning layered sill (after Ernst 1990)

Back to Egersund.

Locality 1.15 (1212.2; LK306-804) THE KOLLDAL LAYERED INTRUSION

From Egersund take the road to Kolldal.
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Fig. I 1.4. Geological map of the Kolldal layered intrusion.
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The Kolldal body is also intruded in the southern marginal border of the Egersund-Ogna
anorthosite at the contact between this anorthosite and the norito-granitic zone of Puntevold-
Lien (Piron 1981) (Fig. I 1.4). The contacts between the body and the surrounding rocks are
discordant and numerous inclusions have been observed. Detailed field data suggest that this
small massif is lens-shaped and dips slightly towards the north. It clearly crosscuts the sub-
vertical foliation of the Egersund-Ogna margin. In the south it displays a sub-vertical contact
with the norito-granitic zone of Puntervold-Lien. It can be divided in two broad zones grossly
oriented NE-SW: a noritic to leuconoritic zone containing some mangerites to the North and a
coarse grained leuconorite to the South. The northern contact of the body with Egersund-
Ogna is sub-horizontal and underlined by a fine-grained leuconorite. A m-sized jotunitic dyke
is intruded in the anorthosite roof parallel to the contact. Mineral compositions display the
following ranges: Anss-Anuss (plagioclase), Ensses (orthopyroxene), Hem;., (ilmenite).
Apatite is absent in the coarse grained leuconorite and present in the upper part of the
intrusion. Moreover, magnetite is more abundant in the upper part.

Locality 1.16 (1212.2; 1.K326-801 to 330-796) THE LIASEN SECTOR

From Kolldal, carry on by the same road to Heggdal and at the crossing take to the left up to
the Liavatn mouth. Walk southward on the eastern bank of the stream.

This cross-section permits to observe a continuous transition from typical foliated leuconorite
from the margin of the EGOG massif to the Héland anorthositic massif and an ilmenite
deposit.
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Fig. I 1.5 Magnetic foliations and lineations in the anorthosite and leuconoritic gneisses. Schmidt projections of
Ki(o), K5(A) and K;(0) axes of the magnetic susceptibility ellipsoid (full symbols represent average values) at
various localities (from Lambert 1998).
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Typical E-W trending deformed margin of the EGOG massif made up of foliated leuconorite
dipping to the South (Fig. I 1.5). The rocks display all variants in deformation intensity of an
anorthosito-leuconoritic complex with variable grain size yielding a variety of lithologies
from coarse- to fine-grained anorthositic, noritic and pyroxenitic gneiss. The texture is
strongly granoblastic with granulated opx stretched along the foliation plane sometimes over
distances of several metres. The rock becomes gradually enriched southwards in quartz lenses
and bands. Lenticular bodies alternating layers of granitoidic and noritic composition become
more common (most probably inclusions of migmatitic gneiss from the envelope). Metric to
decametric folds are beautifully exposed. One of them shows an asymmetrical shape resulting
from a cinematic amplification of a mechanical discontinuity, which points to the uprise of the
central part of the massif relative to its border (Fig. I 1.6). This relative shear movement of
EGOG and Héland (diapirism of EGOG - sinking of Héland) has first produced the strong
foliation of the EGOG margin and then the folding of this foliation. The B-axes of these folds
evolve from a "b" to an "a" position but never reach a sheath fold shape, and their attitude
never overtake a 45° dipping. No lineation is preserved on the foliation surfaces because of
the strong recrystallisation of the rock during deformation. The sense of shear is mainly
recorded by the asymmetric shape of stretched mega-opx and of drag folds.

Fig. I 1.6. Drag fols in the EGOG foliated margin. The central
part of the EGOG massif is on the left of the photo and the
foliation is dipping to the south.

- This formation is followed by a 100-150 m-thick leuconoritic unit, less deformed, more
massive but with thin lenses and discontinuous mafic layers. The rocks are coarser-grained,
the occurrence of Fe-Ti oxides is conspicuous and the opx displays an interstitial poikolitic
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structure. This overall igneous-looking aspect was noted by Michot who considered it as
resulting from an in situ leuconoritic anatexis (in Hubaux 1960). This hypothesis is no
more considered nowadays.

- A 50m-thick unit follows. It is made up of a fine-grained sugar-like norite containing
lenses of anorthosite and of pyroxenite. Petrographically the grain size does not appear to
result from a deformation process: the plagioclase is antiperthitic, much larger than the
mafics and with irregular contours, a granular texture which suggests a rapidly cooled
magma. Geochemically is a high-alumina gabbro with relatively high Al,O; (18.6 %) and
Ti0, (2.4 %), low K»0 (0.37%) and P,Os (0.01%) and Mg#=0.45 (Lambert 1998), similar
in composition to the high-alumina gabbros in the Laramie anorthosite complex (Mitchell
et al. 1995). A distinct positive Eu anomaly and the presence of anorthosite and pyroxenite
inclusions suggest a crystal laden liquid.

Photo I 1.4 Layers of ilmenite ore in anorthosite (Kydlandsvatn
deposit, Liaasen sector).

- After a more foliated zone resembling EGOG highly deformed margin (but with oxide
minerals!), one enters an anorthosite with layers of Fe-Ti oxide minerals. This zone
extends on the whole northern shore of the Kydlansvatn where evidence of old mining
activities in the thickest layers (1-2 m) are numerous (see Appendix of Chapter 5 for more
extended description of the Kydlansvatn deposit). Here in this section, the mafic layers (1-
5 cm thick), interleaved with anorthosite layers, are made up of hemo-ilmenite (ca Hemy)
with traces of aluminous spinel, characteristic of type I deposits (though the major
Kydlansvatn occurrences belong to type II, see Chapter 5). I[lmenite layers form bundles
that wrapped anorthosite lenses and boudins, and display folds and other evidence of high-
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temperature deformation. Cr,O3 contents in ilmenite vary between 343 and 1547 ppm (12
samples) and a southward increase is suggested. V,03 varies between 0.3 and 0.4 %, and
Ni between 187 and 317 ppm, with a very coarse positive correlation between Ni and Cr
(0.5). An interpretation of the Kydlansvatn deposit is given in the Appendix of Chapter 5.

- The section ends in the Héland massif which shows beautiful relationships between
anorthosite enclaves and coarse grained ilmenite bearing leuconorite.

Back to Egersund and Moi.

*kk
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THE BJERKREIM - SOKNDAL INTRUSION
(by Brian Robins and J. Richard Wilson)
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Fig. I2.1. Localities in the Bjerkreim-Sokndal Intrusion described in the guide

Locality 2.1 (1212 I1; LK319-001 to LK320-985): TRAVERSE THROUGH THE LOWER
PART OF MEGACYCLIC UNIT IB. HOLMEN TO ODLANDSHOLEN.

(by Brian Robins)

Description: The traverse commences in plagioclase cumulates (pC) (mainly leuconorite)
southeast of the farm at Holmen, near the base of MCU IB. They contain plagioclase with a
bimodal size distribution and intercumulus orthopyroxene and ilmenite. Both the megacrystic
and smaller plagioclase crystals are laminated. Xenoliths of anorthosite similar to that found
in the nearby Egersund - Ogna Massif are common. Note the substantial thickness of pC. To
the southwest this zone gradually thins and eventually disappears near the Berse lake. Further
southwards along the traverse, pC is succeeded stratigraphically by plagioclase-ilmenite
cumulates (piC) with faint modal layering and numerous rafts of mafic granulite and then
strongly-layered plagioclase-orthopyroxene-ilmenite cumulates (phiC). The succession
reflects the sequence of crystallisation (plagioclase — ilmenite — orthopyroxene) of the
parental magma. In the upper part of the zone of piC there is a horizon particularly notable for

93



Rogaland guidebook

its content of anorthosite blocks. In the phiC at the south end of the traverse there are
abundant, thin but laterally-persistent modally-graded layers, in which plagioclase megacrysts
are concentrated in the plagioclase-rich layer tops. The modally-graded layers are separated
by thicker isomodal phiC layers, and the basal contacts of some modally-graded layers are
disconformities. The more mafic cumulates which form a knoll on the opposite (west) side of
the river are more-evolved plagioclase-orthopyroxene-Ca-rich pyroxene-ilmenite cumulates
(phciC) that occur higher up in MCU IB. They are preserved in a downthrown fault block.

Mineral compositions. Plagioclase in pC towards the base of MCU IB along this traverse is
around Anys, significantly more calcic than at the top of the underlying phiC (Ang;). Variation
within the pC zone is slight, but in the phiC and overlying phciC the An content decreases
from 45 to 42. No clear systematic variation in the Mg# of Ca-poor pyroxenes has been
detected in this traverse; it varies in the range of 68.5-67. The lowest of these values are,
however, found in the phciC towards the top of the unit.

Locality 2.2 (1212 I1; [LK324-985): XENOLITHIC pC (MCU IB). SOUTH SIDE OF
ODLANDSHOLEN.

(by Brian Robins)

Description: A major NE-SW fault (with a downthrow to the north) repeats the succession
seen in the previous traverse on this southern side of the @rsdalen valley. In this recently
excavated surface numerous large blocks and slabs of anorthosite and leuconorite are clearly
visible enclosed in leuconorite (pC) belonging to the lowermost unit of MCU IB. These
xenoliths appear to have been derived from the adjacent Egersund-Ogna Anorthosite Massif,
and are particularly abundant in the lowermost parts of MCUs IA & IB.

Locality 2.3 (1212 1II; [K334-983): BOUNDARY BETWEEN MCU IB AND IL
ROADSIDE EXPOSURES BETWEEN NETLAND AND HYTLAND.

(by Brian Robins)

Description: Proceeding down the hill, road cuts expose the transition from phiC, forming the
central zone of MCU IB, to plagioclase-orthopyroxene-Ca-rich pyroxene-ilmenite cumulates
(phciC) (hand lenses are essential!), the most evolved cumulates in MCU 1B in this area.
Further to the west, the phciC is overlain by a thin layer of gabbronorite in which magnetite
and apatite are cumulus minerals. In the lowest exposures, a 2m thick ilmenite-rich transition
zone between the top of MCU IB and pC forming the lower part of the thick MCU II can be
examined. This regressive zone of phiC reflects the entry of more-primitive magma into the
chamber in which the cumulates were crystallising. The overlying pC characteristically
contains magnetite, as do the troctolites that occur near the bases of MCUs III and IV, but
evidence of cumulus olivine has only been discovered at a single locality near the base of
MCU IL

Mineral compositions. The upper part of MCU IB at this locality contains Ang; and
pyroxenes with Mg#s of 64-68 (Ca-poor) and 72-78 (Ca-rich). The pC at the base of MCU II
contains Angg.s;.
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Locality 2.4 (1212 II, LK321-970): Cm-SCALE LAYERING AND CROSS BEDDING.
ROADSIDE EXPOSURE ABOVE A SMALL STREAM, W. OF NETLANDSVATNET.

(by Brian Robins)

Description: At this locality phiC in the central part of MCU II exhibits several sets of cross-
lamination. Such structures are fairly rare in the intrusion, but are important in indicating the
ability of currents moving along the floor of the magma chamber to erode unconsolidated
cumulates and to transport and redeposit cumulus crystals elsewhere.

Locality 2.5 (1212 1II, 1LK327-956): BOUNDARY BETWEEN MCUs II AND I
EPTELANDSVATNET - SHORT TRAVERSE FROM NORTH TO SOUTH ALONG THE
BLUFFS ABOVE THE NE-END OF EPTELANDSVATNET.

(by Brian Robins)

Description: The traverse starts in rather massive phiC at the top of MCU II. This is followed
stratigraphically by a thin sulphide-bearing subunit that occurs at the base of MCU III. This
subunit consists of rusty, massive ilmenite norite, strongly- to intensely-layered mafic
ilmenite norite or massive orthopyroxenite. This subunit can be traced discontinuously around
the whole of the Bjerkreim lobe of the BKSK, a distance of more than 30 km. The main
sulphides are pyrrhotite, chalcopyrite and pentlandite (Cu/Cu+Ni = 0.5). Sparse secondary
pyrite occurs locally.
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Fig. I 2.2. Cryptic variation in plagioclase and orthopyroxene across the MCU II/III contact at Eptelandsvatnet
(loc. 2.5). Based on work by Kristine Krogh Jensen.
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Assays have shown that the sulphides contain insignificant concentrations (< 40ppb) of PGE
+ Au. The sulphide-bearing subunit is overlain by leuconorites that in places are characterised
by pronounced modal layering in which layers rich in cumulus plagioclase alternate with
ilmenite and orthopyroxene-rich layers (intruded in this traverse by a basalt sheet probably
belonging to the Egersund dyke swarm). These are followed by rather massive pC or phiC
which grades(?) into coarse-grained, plagioclase-olivine, zone IIIb cumulates. Cumulus
olivine is not always visible in the poC; it is commonly replaced by orthopyroxene (due to
reaction with intercumulus melt) or fine-grained, symplectitic intergrowths of orthopyroxene
and magnetite (due to subsolidus oxidation). Olivine can, however, be identified with a hand
lens on glaciated pavements along the sides of the stream at the southern end of the traverse.
Further to the south, the troctolites are succeeded by modally-layered phiC with rare slump
structures. The traverse demonstrates a stratigraphic sequence different from that of MCU IB
& 1I suggesting that the magmas which periodically flowed into the chamber varied in
composition.

We can return by walking to the northeast and then following the sulphide-rich subunit
southwestwards back to Eptelandsvatnet. This subunit is generally underlain by up to 10
metres of rusty leuconorite with disseminated sulphides, and overlain by a thinner zone of
sulphide-bearing norite. The subunit itself is up to 1m thick and consists of either pyrrhotite
pyroxenite or modally-graded layers of pyrrhotite norite, in places containing norite xenoliths.
It varies considerably in thickness and in places is totally absent, although the norite with
disseminated sulphides persists. The subunit appears to be the result of the collection of
droplets of an immiscible sulphide melt in depressions on the floor of the magma chamber.
The subunit probably reflects the initial response to the inflow of new magma into the
chamber, mixing of new and more-evolved, resident magma and the formation of a hybrid
magma that was saturated only in othopyroxene and sulphides. Continued magma inflow (and
a reduction in the efficiency of mixing) eventually led to the crystallisation of poC, that are
among the highest-temperature cumulates present in the intrusion. The thickness of the zone a
cumulates here is ~120m, showing that magma replenishment persisted for a considerable
period of time.

Mineral compositions. The An-content of plagioclase in a 30m thick interval beneath the
sulphide-rich subunit increases from Ang; to Angy. Immediately above the subunit it varies
from Ansg49 and in poC of zone IIIb from Ans;45. The Mg# of Ca-poor pyroxene decreases
rapidly from 76 to ~71 through 20m of phiC forming the upper part of MCU II and increases
to 75 just above the sulphide-rich subunit. The unusually Fe-rich pyroxenes at the top of
MCU II may be a result of subsolidus re-equilibration with the sulphides present, particularly
in connection with the oxidation of pyrrhotite to pyrite. Above this subunit the Mg# of Ca-
poor pyroxene remains fairly constant but increases slightly (to 77-76) in the poC. Olivine
varies between Fo77.74 in poC. Although the minerals show irregular and uncorrelated changes
in composition (possibly due to magma mixing and disequilibrium), there appears to be a
slight reverse cryptic variation in An% through the zone a cumulates.

Locality 2.6 (1212 II, LK353-886): CONTACT OF MCUs II AND III. HAGASEN.

(by Brian Robins, based on work by Kristine Krogh Jensen)

Description: Hégasen is a hill located on the southern flank of the Bjerkreim lobe of the
Bjerkreim Sokndal intrusion, on which the layered sequence across the boundary between
MCUs II and III is well exposed. The sequence of cumulates is similar to that at
Eptelandsvatnet (see loc. 2.5) but condensed in thickness. We shall walk from the road
northeastwards up the layered sequence to the top of Hagésen.
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The stratigraphically-lowest cumulates exposed along the traverse are massive to weakly
modally-layered ilmenite leuconorites (phiC) forming the uppermost part of MCU II. These
are succeeded by 20cm of intensely modally-layered melanorite and a massive layer of
sulphide-bearing pyroxenite up to 2m thick that mark the base of MCU III. The
orthopyroxenite is exceptionally thick here and as it dies out in both directions along strike it
appears to occupy a shallow and >200m broad trough. The orthopyroxenite is overlain by
phiC with laterally-persistent and remarkably rythmic modal layering that gradually dies away
upwards into massive phiC about 15-20m above the orthopyroxenite. The base of the
succeeding poC is encountered a few metres further up the sequence (25-30m above the
orthopyroxenite).

Mineral compositions. Mg#s of orthopyroxenes in the upper part of MCU II are ~74,
decreasing rather abruptly to 70 immediately beneath the orthopyroxenite, as at
Eptelandsvatnet. The orthopyroxenite itself contains pyroxene with a Mg# of 72.5 and in the
overlying phiC the Mg# shows a slight regressive trend from 72 to 74. The poC contains
olivine of Fo74.76. Plagioclase exhibits no systematic variations in composition. PhiC in the
upper part of MCU II contains plagioclase of fairly constant composition (Ans7) while in the
sequence above the orthopyroxenite plagioclase compositions vary irregularly between Ange
and 49.

EPTELANDSVATNET
HAGASEN 150m . TEKSETJORNI

phimC

100m

MCU 11

norite

Fig. I 2.3. Comparison of the stratigraphic sequences across the MCU II/III contact at Eptelandsvatnet (loc. 2.5),
Hagasen (loc. 2.6) and Teksetjorni (loc. I 2.7). Note the thicker sequence of zone a cumulates in the axial region
of the intrusion at Eptelandsvatnet compared the equivalent in the southern flank (at Hagésen), and the lack of
zone b (poC) at Teksetjorni in the eastern flank of the intrusion.
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Locality 2.7 (1312 III, LK433-935): CONTACT OF MCUs II AND IIIl. BETWEEN
TEKSEVATNET AND TEKSETJORNI.

(by Brian Robins)

Description: This locality lies on the eastern flank of the Bjerkreim lobe of the Bjerkreim
Sokndal intrusion, to the east of the Teksevatnet re-entrant. Cumulates in this part of the
intrusion are believed to have crystallised on an elevated portion of the floor of the magma
chamber and as a result the Layered Series is condensed relative to the axial regions of the
intrusion and certain stratigraphic zones are absent. The cumulates along a short N-S traverse
at this locality can be compared with those present at Eptelandsvatnet and Hagasen,
illustrating some of the lateral stratigraphic variations that occur in the Layered Series. The
locality also demonstrates the relationship that exists between ilmenite-rich cumulates and
replenishment of the magma chamber.
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Fig. I 2.4. Cryptic variation in plagioclase, orthopyroxene (green) and olivine (violet) across the MCU II/111
boundary at Teksetjorni.

The traverse starts from the track leading to Teksetjorni in ilmenite norites (phiC) belonging
to the upper part of MCU II. These cumulates exhibit steeply-dipping to overturned small-
scale modal layering, minor unconformities and abundant, generally tabular xenoliths. They
are succeeded by ~5m of ilmenite-rich melanorite with sulphides and sparse olivine at the
base of MCU III, then rather massive leuconorite containing discontinuous ilmenite-rich
layers and a thin sequence of modally-layered ilmenite norite. The latter are overlain by
magnetite-bearing norite enclosing numerous blocks and slabs up to 100m across of massive
norite or leuconorite. Note that the prominent poC seen at Eptelandsvatnet and Hégasen is
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absent here. The unit of olivine-bearing melanorite is the lateral equivalent of the layer of
sulphide-bearing orthopyroxenite developed locally elsewhere.

Mineral compositions. The compositional variations in plagioclase, orthopyroxene and
olivine in the sequence developed at this locality are illustrated in Fig. I 2.4. Note the cryptic
regression through the uppermost 5m of MCU II as well as the presence of more calcic
plagioclase, more magnesian orthopyroxene and magnesian olivine in the melanorite, all
suggesting that the formation of the melanorite was a response to magma-chamber
replenishment. Orthopyroxene (and to a lesser degree plagioclase) near the base of the
overlying leuconorite returns to compositions similar to those in the upper part of MCU I,
and it exhibits a slight but consistent cryptic regression through the leuconorite into the phiC.
This trend does not persist further upwards in the sequence, the majority of MCU III in this
region being characterised by a normal cryptic variation (Fig. I 2.5).

Interpretation. Recently we have studied the lithostratigraphic relationships and cryptic
layering in a series of sections across the boundary between MCUs II and III spaced over a
distance of 25km along strike. This boundary is particularly instructive with respect to
processes during replenishment since lateral variations in the thicknesses of MCU II and III
are pronounced and reflect the topography that existed on the chamber floor at the time of
magma replenishment. In the central region of the BKSK, around the hinge of the deep
syncline defined by the layering, MCU III has a thickness of 900-1050m while in the SW
limb of the syncline its thickness is reduced but fairly constant at ~800m. To the east of the
axial region MCU III decreases to <350m in thickness over a step of gneiss in the substrate,
then increases slightly to ~450m before thinning and wedging out further to the SE against the
base of the intrusion. The thickness of MCU II varies in a similar but even more dramatic
way. These variations are considered to be due to crystallisation of the megacyclic units in a
central trough on the magma-chamber floor and on an elevated “shelf” or shallow trough to
the east. In addition, differentiation of the resident magma was arrested at a relatively early
stage by the influx of magma marked by the MCU II/IIl transition. MCU II consists
exclusively of a thin basal sequence of plagioclase cumulates and a thick series of phiC.
Cumulus magnetite does not make an appearance in MCU 11, and it is likely that the resident
jotunitic magma was differentiating with increasing density during its crystallisation.

The stratigraphically lowest cumulates in MCU III are a thin sequence of strongly-layered
melanocratic, orthopyroxene- and ilmenite-rich norite (phiC), or a discontinuous layer of
orthopyroxenite up to 3m thick, all characterised by elevated amounts of disseminated
sulphides (pyrrhotite, pentlandite, chalcopyrite and pyrite). The layer of orthopyroxenite is
unique in the Bjerkreim Layered Series. Although it shows considerable lateral variations
both in thickness and modal composition, this sequence can be recognised everywhere at the
base of MCU III. A distinctive feature of the sequence as developed on the “shelf” is the local
occurrence of sparse cumulus olivine in melanocratic ilmenite norite and the correlative layer
of orthopyroxenite. The basal sulphide-bearing cumulates are succeeded in the majority of the
Bjerkreim lobe by 25-130m of massive to strongly-layered phiC (zone a cumulates), then a
massive unit of troctolite (pomC, zone b) up to 100m thick, that constitute the highest-
temperature cumulates in MCU III. The troctolites reside beneath lower-temperature phiC,
phimC and eventually phcmiaC that form the remainder of MCU III. In the eastern part of the
lobe the sequence immediately above the basal cumulates of MCU III is much thinner (25-
45m) and consists of either rather massive leuconorite with discontinuous thin layers of ihC
(resembling zone a cumulates elsewhere in the intrusion), or modally-layered, melanocratic
ilmenite norite. With the exception of a locally-developed 1m-thick layer, troctolite (zone b)
is conspicuously absent in this shelf region and the leuconorite or melanocratic norite is
succeeded by “normal” phiC.
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Fig. I 2.5. Cryptic variation in plagioclase through MCU II, III and the lower part of IV in the eastern flank of
the Bjerkreim lobe as displayed in a series of samples collected along a traverse from the margin of the intrusion,
through the Teksetjorni locality (loc. I 2.7) to Lauvneset (loc. I 2.8).

The cryptic variation across the MCU II/III boundary is characterised by a regression in
mineral compositions (and *’Sr/**Sr) from the phiC forming the upper part of MCU 1I to the
most primitive compositions that are found either in the troctolites forming the zone b
cumulates of MCU III in the central and western part of the lobe or in the cumulates above the
sequence of leuconorite/melanocratic norite in the eastern, “shelf” area. This is consistent
with prolonged magma-chamber replenishment associated with progressive mixing of the
inflowing and resident jotunitic magmas. The sulphide-enriched orthopyroxenite and related
melanocratic ilmenite norite are explained by crystallisation of hybrid magmas residing in the
pyroxene phase volume during the initial stages of replenishment. Their “global” distribution
is inferred to result from mixing taking place some distance above the chamber floor at a level
where the plume formed by the inflowing magma reached a level of neutral buoyancy in the
compositionally-stratified magma column and spread laterally throughout the chamber. As the
influx proceeded the resident magma was stripped from the base of the chamber and mixed
into the ascending plume as the hybrid layer increased in thickness and became
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compositionally stratified. Eventually the lower boundary of the hybrid layer reached the floor
of the magma chamber. The highest-temperature cumulates (poC, zone b) crystallised from
the lowest part of this hybrid layer and were restricted to the central trough on the chamber
floor, while lower-temperature cumulates crystallised simultaneously on the eastern “shelf”
from magma higher up in the hybrid layer.

Locality 2.8 (1312 III, LK428-931): MAGNETITE, ILMENITE AND APATITE-BEARING
CUMULATES (MCU 1V) . LAUVNESET, nr. TEKSE.

(by Brian Robins)

Description: Cumulates containing apatite together with magnetite, ilmenite and Ca-rich
pyroxene occur in the upper parts of MCUs IB, III and IV. Apatite in the Bjerkreim-Sokndal
Intrusion generally makes its entry as a cumulus mineral at about the same stratigraphic level
as Ca-rich pyroxene but may preceed or postdate it stratigraphically by some tens of metres.
The late appearance of Ca-rich pyroxene is a reflection of the unusually Ca-poor composition
of the parental jotunite magmas. Apatite is most abundant immediately after its appearance as
a cumulus mineral when it may constitute as much as 10% of the rocks. This locality on the
shore of Teksevatn exhibits apatite- and oxide-rich gabbronoritic cumulates with pronounced
modal layering immediately above the apatite-in phase contact within MCU IV. The sequence
of MCU IV cumulates in this area is different from the axial region of the intrusion: The
thickness of zone ¢ (phiC) is reduced and zone d (phimC) seems to be absent (Fig. I 2.5).

Mineral compositions. In keeping with the evolved cumulus assemblage, the minerals in this
part of the Layered Series have relatively low-temperature compositions: Plagioclase is
~Anyp; Ca-poor and Ca-rich pyroxene have Mg#s of ~63 and ~70 respectively.

Locality 2.9 (1212 11, L.K342-905): BASAL CONTACT OF MCU IV. STOREKNUTEN.

(by J. Richard Wilson)

Description: Storeknuten is a rounded hill, located on the southern flank of the Bjerkreim
lobe of the Bjerkreim Sokndal intrusion (Fig. I 2.1), where the boundary between Megacyclic
Units III and IV has been studied in detail (Jensen et al. 1993, Nielsen et al. 1996, Barling et
al. 2000). There is a good view of the Bjerkreim lobe from the summit of Storeknuten. The
strike of the layering here is NW-SE and the dip is about 50-60° to the NE into the core of the
Bjerkreim synform. Olivine-bearing rocks in the Layered Series are restricted to two zones
just above the bases of MCUs IIl and IV and form pronounced topographic ridges.
Storeknuten belongs to the uppermost olivine-bearing zone which Paul Michot called the
Svalestad unit (referred to as zone IVb here).

We shall approach Storeknuten from the southeast, along a farm track. There are sporadic
exposures of gabbronorite (phcimaC) belonging to the uppermost part of MCU III (zone e) in
the fields. On the left of the track (at LK344902) is a particularly instructive exposure of
modally-layered gabbronorite in which several gneissic xenoliths are embedded. Structures
due to blocks of gneiss impacting and slicing into partly-crystallised cumulates are preserved
and allow discussion of layering-forming processes (Photo I 2.1).
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Photo I 2.1. Modally-graded layering in MCUIII, Storeknuten section.

At the base of Storeknuten, the MCU Ille cumulates are overlain by a zone (about 30m thick)
of plagioclase-rich cumulates belonging to MCU IVa (Fig. I 2.6). MCU IVa consists
dominantly of pC and piC, with magnetite and Ca-poor pyroxene occurring as sporadic early
phases. A characteristic feature is the presence of thin ilmenite-rich layers, many of which are
discontinuous and deformed by slump folds. These ilmenite-rich layers, particularly abundant
in the axial region of the intrusion at this stratigraphic level, suggest that magma-chamber
replenishment and magma mixing were a prerequisite for ilmenite concentration.

The entry of olivine as a cumulus phase defines the base of MCU IVb. This boundary is
exposed on the southern slopes of Storeknuten. MCU IVDb consists dominantly of massive
leucotroctolite containing oikocrysts of Ca-poor pyroxene. MCU IVb is about 100m thick and
contains sporadic cumulus magnetite (and possibly ilmenite and Ca-poor pyroxene), as well
as small quantities of biotite and brown hornblende. Most olivines are partly or completely
replaced by orthopyroxene-oxide symplectites. The summit of Storeknuten is composed
entirely of rocks belonging to MCU IVb. The disappearance of olivine and magnetite, and the
entrance of cumulus Ca-poor pyroxene in the slopes to the north define the base of MCU V¢
(phiC). This phase contact is accompanied by the development of an igneous lamination and
modal layering. Modal layering becomes increasingly well developed up through MCU IVe.

Mineral compositions and Sr-isotope ratios. There is a cryptic regression in mineral
compositions through the uppermost part of zone Ille that continues through zone I'Va (Fig. I
2.7). The upper part of MCU Ille has Ca-poor pyroxene with Engs.70, plagioclase with Anss 46
and an initial Sr-isotope ratio of 0.7061; the base of MCU IVb has Enys, Ans; and Sr, 0.7049,
together with olivine Fo74. There is an extremely systematic upward decrease in Sr-isotope
ratios through the upper part of MCU IVa (Fig. I 2.8). The variation in initial Sr isotope ratios
appears to be delayed relative to the regression in mineral compositions.
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Fig. I 2.6. Geological map of the Storeknuten area showing the distribution of major outcrops,
lithologies, strike and dip of layering, and sample locations. The legend explains the
abbreviations used for the cumulate nomenclature. From Jensen et al. (1993)

Plagioclases show a rather erratic trend to more evolved compositions upwards through MCU
IVDb, while olivines first become more Fe-rich and then more Mg-rich (Fig. I 2.7). The olivine
trends may have been influenced by trapped-liquid shift. Sr-isotope ratios increase
systematically from 0.7049 at the base of zone IVb to 0.7053 at its top, reach 0.7058 in zone
IVd and returns to 0.7061 in zone IVe (Figs. [ 2.7 & 1 2.8).
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Fig. I 2.7. Cryptic variation through the upper part of MCU III and the lower part of MCU IV at
Storeknuten. The sample numbers (J1-15) correspond to those marked in Fig. I 2.6. Based on data

from Jensen et al (1993) and Nielsen et al. (1966).
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The significance of the MCU III/IV boundary for magma mixing. The cryptic variations
across the boundary between MCUs III and IV clearly indicate the operation and importance
of magma mixing during magma-chamber replenishment. The magma residing in the chamber
when the influx marked by the base of MCU IV took place was compositionally zoned (Fig. I
2.9), and assimilation of gneissic country rock at the roof had resulted in an elevated
Sr-isotope ratio that may have increased upwards through the magma column. The inflowing
magma had an Sr-isotope ratio of about 0.7049 while the resident magma had a ratio of
0.7061 at the floor in the Storeknuten area. The inflowing magma mixed with the basal
layer(s) of the resident magma as a result of the new magma fountaining into the chamber. A
decreasing degree of mixing between the inflowing and resident magma with time led to
hybrid magmas with decreasing Sr-isotope ratios. Crystallisation of these hybrid magmas
during replenishment= produced the isotopic regression in the upper part of MCU I[Va.
Initially, influx led to elevation of the zoned magma column, exposing the base of the
chamber in the Storeknuten area, located some distance up the inwardly-sloping floor, to
progressively more primitive magma. It took some time before the hybrid magma flooded this
point on the floor, causing the delay in the regression in isotope ratios relative to that defined
by the mineral compositions. When the magma inflow ceased, olivine-bearing rocks of MCU
IVb began to crystallise at the base of the chamber. The leucotroctolites at the base of MCU
IVD are amongst the most primitive rocks in the entire intrusion.

Calculations based on geochemical modelling, the thickness of cumulate stratigraphy repeated
(from the top of zone Ille to the appropriate part of zone IVe) and Sr-isotope ratios indicate
that the layer of hybrid magma generated during replenishment had a thickness of 350-500m
in the Storeknuten area and that the leucotroctolites of MCU IVb represent about 20-30%
crystallisation of this layer.
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Fig. I 2.9. Sketches of the Bjerkreim-Sokndal magma chamber during formation of the MCU III/IV boundary.
From Jensen et al. (1993). A. Crystallisation of the upper part of MCU III. The magma layer parental to zone
II1d is only present in the central, lowest part of the saucer-shaped chamber. Zone Ille is crystallising from the
overlying magma layer(s) towards the margins. The Storeknuten profile is located near the margin, where zone
IIle cumulates are present. B. Magma replenishment elevated the residual magma and produced a hybrid magma
layer at the floor. Zone Illa crystallised during influx to produce a modal and cryptic regression. Note that the
vertical scale has been greatly exaggerated in these sketches.
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Itinerary 3

THE SOKNDAL LOBE AND THE UPPER PART OF THE BJERKREIM-
SOKNDAL INTRUSION

(by J.C. Duchesne and E. Wilmart)

The itinerary starts at Rekeland on road 44.

Locality 3.1 (1311.4; 1. K401-728) REKELAND: EIA-REKEFJORD INTRUSION

The road cuts across the Eia-Rekefjord jotunitic body which intrudes the contact between the
Helleren anorthositic body on the West and norites of the Bjerkreim-Sokndal lopolith on the
East.

Several types of jotunites are displayed. Near the bridge, along the contact with the
anorthosite, typical homogeneous jotunite which grades upwards into a faintly layered unit
with coarse-grained porphyritic layers. A fine-grained rock, lying conformably (several
metre-thick inclusions?) and an anorthositic inclusion can be seen near the foot-bridge over
the road.

The homogeneous jotunite averages the composition of the samples taken around Rekefjord
(among them, 66-125 - Duchesne et al. 1974) and of the Varberg dyke (see locality 1.8). The
fine-grained rock is petrologically and chemically similar to the chilled-margin of the Varberg
dyke: equigranular texture, with poikilocrysts of opx, fine-grained, needle-like apatite crystals
and subhedral oxides, the latter minerals being dispersed in all other minrals (Duchesne et al.
1985a; 1989; Vander Auwera et al. 1998) . This rock provide good evidence in favour of the
existence of (chilled) jotunitic liquids.

Proceed a few hundred metres to the South along road 44

Locality 3.2 (1311.4; LK404-740 to 402-725) N.HAUGE: LAYERED NORITES OF
BJERKREIM-SOKNDAL (SOKNDAL LOBE)

The road follows the W flank of the lopolith and displays discontinuous outcrops of layered
norites with various characters of cumulate rocks (planar and linear lamination, banding,
small-scale rhythmic layering, modally graded layers, etc.). The rocks belong to the upper
macro-rhythmic units of P. Michot’s stratigraphy (Michot 1960; 1965)). They are commonly
apatite and cpx-bearing.

Proceed to Hauge and carry on towards Ana-Sira; at Amot, take the bridge to the left and the
road to the North. At the first crossing (500 m after the bridge) take to the left. The road runs
through the norites of the lopolith. About 2 km further North, after the bridge, at Bakka
schoolhouse, take to the left towards Slatten and Herveland.

Locality 33 (1311.4; 1K423-741) HERVELAND: MANGERITES FROM THE
BJERKREIM-SOKNDAL LOPOLITH

(See P. Michot, 1960, IIl h, p.37).
When reaching the plateau, after Slatten, the outcrops are on the left side of the road.

Typical Mangerite: irregular mosaic of spectacular mesoperthite with interstitial fayalitic
olivine (FagpFog), ferroaugite (MgisFes;Cas3), minor ferrohypersthene (MgsFegoCay),

106



Rogaland guidebook

ilmenite (Hemsllmgy), Ti-magnetite (UspsoMtsg) and apatite) (for details on the mineralogy
and chemical composition - major and trace element - see Duchesne 1970; 1972b; Duchesne
& Demaiffe 1978; Duchesne et al. 1987a; Duchesne & Wilmart 1997). Some fine grained
inclusions (with “ chilled facies ’) of jotunitic to olivine-bearing mangeritic composition.

Back to Bakka schoolhouse, take on the left the road to Bakka (farms). It passes into the
banded norites of the lopolith (dipping 40°-60°W).

Locality 3.4 (1311.4; LK433-742 to 431-754 and 425754) ORSLAND: TRANSITION
FROM NORITES TO MANGERITES AND QUARTZ MANGERITES

This itinerary (illustrated in Fig. I 3.1) permits to observe a nearly continuous section starting
in the layered norites, passing through the transition zone into the mangerites and from the
latter to the quartz mangerites through the so-called xenolithic septum of Michot (1960). For
more details see (Duchesne et al. 1987a; Duchesne & Wilmart 1997).

a. From the last hairpin turn at the Bakka pond, walk uphill the path to Orsland farm:

norite (cpx and apatite bearing) with a strong planar lamination (40-50°W) and some mafic
layers, belonging to the eastern flank of the lopolith;

fine-grained dyke of quartz-monzonite with inclusions of norite;

after the farms, the mafic layers increase in number and become more irregular.

b. In a small gully, rusty ultramafic layers (c. 1m thick), intercalated with norites: the
association in the ultamafic layer is 35% olivine (Fosp), 12% cpx (MgssFe;7Cayss), 17%
ilmenite (Hem; ¢llmgy 4), 30% magnetite (TiO, = 11%, Uspssz» Mtess), 5% apatite (sample
6482 - (Duchesne 1970; 1972a; Duchesne et al. 1987)

c. At the end of the meadows, quartz mangeritic Orsland dyke (Duchesne & Wilmart 1997)
containing inclusions of anorthosite and of mangero-monzonite.

d. 750 m further North, the path reaches a pass on the left flank of which a 50-80 m pile of
rocks can be observed. It is made up of a series of ultramafic layers (0.5 to 4 m thick)
dipping 60-70°W intercalated in the lower part with noritic layers and in the upper part
with mangeritic layers. On top of the series, massive mangerites. This relatively thin pile of
rocks is to the author’s knowledge the best exposed section in the intrusion displaying the
transition between layered norites and the mangerites. Cryptic layering is conspicuous in
the pile of rocks. All minerals progressively and rapidly change in chemical composition
(e.g. olivine Foys to Fojo; TiO; in magnetite from 10% to 19%, etc.) and modal proportion.
The detailed evolution is described in Duchesne et al. (1987a). Petrographic and
geochemical evidence indicate that crystal fractionation (not immiscibility), is the leading
mechanism of differentiation. A typical association is 34% olivine (Foy), 32% cpx
(MgaoFessCayy), 2% ilmenite (Hem; s), 31% Ti-magnetite (19%TiO; i.e. Uspsg), 1% apatite
(sample 66.216 - Duchesne 1970; 1972a; Duchesne et al. 1987a).
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Geological map of thedrsland area
P -_—
7 limitsof marsh
itinerary
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Fig. I 3.1. Geological map of the @rsland area (after Duchesne & Wilmart, 1997). Sample numbers refer to samples detailed in Fig. I 3.2.
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Fig. I 3.2. Compositional variations in the rock sequence from the Transition zone (TZ) through the
mangeritic unit (M) and the enclave-rich zone (EZ) to the quartz mangerite unit (QM). From left to right,
stratigraphic heights relative to the top of the TZ; lithologies; stratigraphic zone distribution; sample
numbers; variation of fe# in olivine, Ca-poor pyroxene and Ca-rich pyroxene; variation of fe# in whole
rock; Eu anomaly; Ba content (ppm). Sample location in fig. 1.3.2. Note that samples BA8 and BA15 are
devoid of olivine and sample BA13 was not studied under the microprobe (from Duchesne & Wilmart,
1997).

e. Walk uphill into massive (weakly foliated) mangerites and go round the Svaletjorn pool to
its southern outlet: mangerite become heterogeneous and overcrowded with xenoliths of
various dimensions, lithologies and grain size (jotunite, porphyritic mangerite, patches of
graphic pegmatite, pillows of fine-grained chilled jotunite, angular-shaped amphibolite).
This zone of 100-200 m thick, which extends on the flank of Kvidefjellet up to the
beginning of the plateau at altitude 250 m, belongs to what P. Michot has called the
xenolithic septum. It straddles the contact between mangerites and quartz mangerites, and
according to Duchesne and Wilmart (1997), indicates a new influx of acidic magma
mixing and mingling with the resident magma on top of the cumulate pile.

f. En route to the Kvidefjellet which is on typical quartz mangerites with or without olivine
(Duchesne & Wilmart 1997). Metre-sized rafts, dykes or inclusions with finger-shaped
contours of fine-grained sugar-like leucogranites (73-78% SiO;) interpreted on the basis of
their trace element composition as back-veining material: leucosome material from
surrounding migmatites remobilized and injected into the magma chamber. These
inclusions also points to the proximity of the roof of the intrusion. The lack of inclusions
made up of the basic (restitic) component of the migmatites precludes an origin of the
quartz mangerite by in situ anactectic melting of the roof.

g. On the plateau at LK417-753 a large leucogranitic inclusion with anastomosed contours
(sample BA20 in Duchesne & Wilmart 1997) (Photo I 3.1);
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Photo I 3.1. Part of a leucogranitic enclave (sample
BA20) showing dyke-like fingers in quartz mangerite.
The very peculiar REE signature permits to identify
the origin as migmatitic melts from the envelope.

h. On the way back, the path is taking a gully, south east of Lunnemyr, which cuts across the
pile of mangerite cumulates (see Duchesne & Wilmart 1997).

Back to Bakka and then to Hauge and Moi.

L
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Itinerary 4

THE ROGALAND INTRUSIVE MASSIFS: EASTERN PART
(by J.C. Duchesne, D. Demaiffe, O. Bolle, J. Vander Auwera and E. Wilmart)

This itinerary will be briefly devoted to the Ana-Sira massif type anorthosite (Fig I 4.1), and
will focus mainly on its relationship with the envelope, the Apophysis and the Hidra

leuconoritic body. The Tellnes deposit will be visited on itinerary 5.

From Moi, take the E39 (E18) to the north. At Heskestad, follow the road to Hauge. It crosses
the upper part of the Bjerkreim-Sokndal intrusion till Eia. Then it follows the contact between
the Eia-Rekefjord jotunitic intrusion and the Haland-Helleren massif till Rekeland. The road
then enters the southern lobe of the Bjerkreim-Sokndal massif and, at Hauge, in the lows
formed by the norites, crosses the axial plane of the syncline. Proceed along road 44 to
Flekkefjord, which enters the Ana-Sira massif (Fig. I 4.1) at the hill foot.

Locality 4.1 (1311.4; 1K446-704): AGGLOMERATE OF ORTHOPYROXENE
MEGACRYSTS

A huge agglomerate of megacrysts of opx and plagioclase can be seen from the road in the
anorthosite, on the other side of the small gully which runs down the road.

The orthopyroxene is Eny4 and its Al content is close to 9.0% Al,03 (specimens EC74-73 of
Emslie (1975).

Locality 4.2 (1311.4; 1.K523-627): BOTNEVATN

Along Botnevatn, spectacular outcrop seen from the road on the northern flank of the small
hill, facing the Botnevatn, immediately on the eastern side of the lake outlet to Asnes.

The so-called Barth’s inclusion of folded leuconoritic gneiss embedded in common
anorthosite and crosscut by a Im-thick anorthosite dyke (Photo I 4.1). The anorthosite
contains small opx megacrysts.

This outcrop has a long scientific history. It has been interpreted in three different ways, thus
reflecting the evolution of ideas on the genesis of anorthosite. It was shown to Paul Michot
(pers. comm.) by T.F. Barth in the fifties as evidence of a metasomatic origin of the Ana-Sira
anorthosite: the folded leuconoritic gneiss body was considered as a relic of an uncompletely
transformed gneiss. For Paul Michot it was an inclusion within an igneous anorthosite. Later,
Michot forged the concept of leuconoritic anatexis (Michot 1955)which was further extended
into the theory of basic palingenesis (Michot 1961b): the gneissis inclusion became a remnant
of an unmelted old leuconoritic gneiss which was the substrate of the migmatitization.
Nowadays, following Maquil and Duchesne (1984) and Duchesne et al. (1985b), the inclusion
is interpreted as a fragment of the margin of the intrusion, deformed by emplacement of the
central part of the massif and engulfed in it (cf. Itinerary 1, localities 1.2, 1.5 and 1.7).

200 m further, the road cuts across the Tellnes main dyke, made up of typical quartz
mangerite.
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Fig. 1 4.1 Geological sketch map of the Ana-Sira anorthosite and related rocks (after Krause and Pedall,
1980). Legend: 1. Charnockitic migmatites and gneisses; 2: Banded noritic-charnockitic gneisses; 3.
Anorthosite (0-10 vol% mafics); 4: Leuconorite (10-25% mafics); 5: Anorthositic-noritic complex; 6-8:
Internal norites; 6: Layered intrusion of Bestalen, poorly stratified upper part; 7: Layered intrusion of
Bostolen, stratified lower part; 8: Norite-pegmatite body of Bléfjell; 9: external norite (J) and ilmenite
dykes; 11; Ilmenite-norite body of Tellnes; 12: Mangeritic units (Lopolith of Bjerkreim-Sokndal); 13:
Igneous layering and secondary foliation (F).
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Photo I 4.1. Spectacular outcrop along the Botnevatnet: the so-called Barth’s
enclave.

Proceed to Kvanvik, on road 44 (Ana-Sira - Flekkefjord).

Locality 4.3 (1311.4; LKS563-621to 591-605) FIDSEL-VARDEFJELL: APOPHYSIS,
HIDRA MASSIF AND COUNTRY GNEISS

At Kvanvik, the road enters the green hollows of the norites of the Apophysis, an intrusion
between the massive anorthosite and the enveloppe of country gneisses. Take a gravel road to
Fidsel. Leave the car at the houses and walk along the path (which starts at the first farm to
the left) towards the Vardefjell. The path has been marked with red stripes by a local touristic
organisation.

Fig. I 4.2 gives a schematic geological map and Fig. I 4.3, two cross sections on which the
various points of interest are reported. The itinerary enables the following units to be
observed:

1. Various facies of jotunites (= hypersthene diorites) and their mingling relationships with
mangeritic hybrid rocks from the Apophysis.

2. A series of supracrustal gneisses in granulite facies from the envelope.
3. The small charnockitic intrusion of Breimyrknutan.

4. The leuconoritic massif of Hidra and its fine-grained “ chilled” margin (porphyritic
jotunite).

5. The foliated Farsund charnockite (Farsundite).
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Fig. 14.2. Geological map of the Kvanvik-Fidsel-Vardefjell area. Legend: 1. Banded gneiss series (supracrustal
gneisses); 2. Vardefjell migmatitic complex; 3. Charnockitic gneisses (Farsund (meta)-charnockite); 4.
Charnockite (Breimyrknutan); 5. Granite-gneiss unit; 6. Jotunite (usually fine-grained, some varieties are
medium-gained); 7. Porphyroidic monzonite/mangerite including porphyritic jotunite with abundant
mesoperthite phenocryst varieties, 7a. with poikilocrysts of amphibole, 7b. with angular, zoned metabasite
inclusions; 8. Coarse-grained leuconorite, 8a. fine-grained porphyritic jotunite; 9. Anorthosite; 10. Doleritic
dyke. a to k: points described in the itinerary. AB and CD: cross-sections (see fig. [ 4.3).

The points are the following:

a. Near the Fidsel farms, the meadows are situated on a medium-grained jotunite, showing
igneous lamination (and lineation) (Table I 4.1; anal. 3 and Fig. I 4.3). Some layering can
be observed along the path, as well as more complex structures (mingling?) with local
concentration of mafics and small fine-grained inclusions. Late acidic dykes.

b. Coarse-grained (porphyroidic = large amount of phenocrysts) mangerite (anal. 8 and 11)
with rounded inclusions of fine-grained jotunite (anal. 7) of various size and shapes and
elongated in the oriented texture. Angular inclusions of amphibolite with dehydrated
noritic rims (Vander Auwera 1993) are common near the contact with rocks from the
envelope, as well as interfingered raft of leucogranitic material.
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Table 4.1. Chemical analyses and normative composition of various samples.

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Sio, 4800 4953 4799 5203 52.10 54.03 5571 5565 5927 58.87 5847 6153 67.62 6538 69.67 7244 73.09
TiO, 461 382 375 326 239 224 200 171 1.9 115 128 144 076 097 085 045 035
ALO; 1420 1450 1415 1371 1548 1558 15.10 1625 1552 1594 1583 1340 1385 13.60 1326 1330 1337
Fe,0; 500 2.3 342 267 597 316 211 406 175 237 380 170 234 147 064 058 135
FeO 1040 1170 12.84 1120 808 819 932 740 724 746 609 7.08 340 509 337 237 184
MnO 0.18 017 025 019 021 017 019 016 015 0.7 015 014 010 0.1 009 006 0.04
MgO 460 480 440 362 141 204 205 144 075 055 069 138 070 034 049 034 031
Ca0 641 646 714 625 585 593 507 433 377 361 371 301 231 278 239 156 091
Na,0 3.65 351 411 435 469 497 498 542 479 504 449 410 375 342 285 289 386
K20 1.08 204 123 223 307 279 328 356 409 457 464 470 454 549 505 514 531
P,0s 0.80 101 124 119 091 107 087 076 038 030 032 058 023 034 030 014 0.4

Fe,O5t 16.54 15.12 17.67 15.10 1494 1225 1246 1227 9.79 10.65 10.56 9.56 6.11 7.12 5.41 3.21 3.39
Total 99.80  99.68 100.52 100.70 100.16 100.17 100.68 100.74 98.90 100.03 99.47 99.06 99.60 98.98 99.99 99.27 100.57

Normative compositions (Wt%)

Or 6.5 12.1 72 13.1 18.1 16.5 19.3 20.9 245 27.0 27.6 28.1 27.0 32.8 29.9 30.6 31.2
Ab 30.7 29.8 34.6 36.5 39.6 41.9 41.8 45.5 40.9 42.6 38.1 35.0 31.8 29.2 24.1 24.6 324
An 19.6 17.8 16.4 11.2 12.1 11.9 9.1 9.4 8.8 7.3 9.3 43 7.5 5.6 8.4 7.0 3.4
Q 2.7 0.4 4.7 1.6 52 10.0 222 17.4 27.4 31.2 27.4
Cpx 59 7.0 9.7 10.6 9.8 9.4 9.2 6.4 6.8 7.7 6.3 6.3 22 5.6 1.4 0.2
Opx 16.5 16.3 7.0 13.5 4.9 8.4 9.6 4.7 8.6 75 4.7 9.8 39 4.7 4.0 4.1 2.4
()] 4.4 10.4 2.5 0.7 2.3 2.5

Mt 73 3.1 4.9 3.8 8.6 4.6 3.0 5.8 2.6 34 5.5 2.5 3.4 22 2.4 0.8 1.9
IIm 8.9 7.3 7.1 6.2 4.5 42 3.8 32 2.3 22 24 2.8 1.4 1.9 1.6 0.9 0.7
Ap 2.0 22 2.7 2.6 2.0 2.3 1.9 1.6 0.8 0.7 0.7 1.3 0.5 0.7 0.7 0.3 0.3

Sample location and description: 1. Matrix of porphyric jotunite JCD70.20 - Fine-grained border facies of Hidra
massif, E. Vardebakkan (Duchesne et al., 1974); 2. Fine-grained jotunite JCD72.34 - E. contact of Hidra massif
(Duchesne et al., 1974); 3. Medium-grained jotunite JCD78.33 — Fidsel; 4. Fine-grained jotunite occurring as
rounded inclusions in 5 (average of 4 samples) — Trolldalen; 5. Porphyric jotunite (associated with 4)
JCD81.12.82 — Trolldalen; 6, id. JCD81.12.6 — Trolldalen; 7. Fine-grained jotunite (rounded inclusion)
embedded in (8) JCD75.69.2 — Erratic; 8. Porphyroidic jotunite mangerite, associated with 7, JCD75.69.1
Erratic; 9. Porphyroidic jotunite mangerite, JCD81.12.9 — Trolldalen; 10. Id. JCD80.28.2 - NW Montremyr; 11.
id. JCD80.28.1 — Sturlaknuten; 12. (Hypersthene-bearing) quartz-mangerite jotunite (average of 10 samples from
the upper part of the Bjerkreim-Sokndal intrusion); 13. Charnockite (average of 2 samples) — Breimyrknutan; 14.
Farsund charnockite (average of 37 analyses) (Wilson and Annis, 1973); 15. Foliated farsundite (average of 2
analyses) — Itland; 16. Leucogranitic gneiss JCD80.30 - contact zone of Hidra massif, Vardebakkan; 17. id.
JCD78.34.1 - Septum, E. - E. Sturlaknuten.

c. Large inclusion (septum) from the envelope made up of banded gneisses which comprises
quartzitic and amphibolitic to noritic layers associated with lenses of leucogranitic gneiss
and followed by a thick fine-grained leucogranitic unit (ca 200 m) faintly oriented (anal.
17). Small doleritic dyke with aphanitic borders.

d. Porphyroidic to porphyritic (quartz-) mangerite (anal. 5, 6, 9 and 10) extending on both
sides of Monstremyr, locally with quartzo-feldspathic patches showing large poikocrysts of
brown amphibole (diam. up to 10 cm) (ferro-edenitic hornblende (Dekker 1978)). Metre-
sized rounded, sharply bound, jotunitic inclusions (anal. 4) and interfingeredleucogranitic
lenses. Swarm of inclusions.

At the northern tip of Monstremyr take the gravel road which follows Trolldalen towards
Torsvatn.
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Fig. 1 4.3. Cross sections in the geological map. Same legend as in fig. 1.4.2.

Series of supracrustals comprising metaquartzites, fine-grained granitic gneisses locally
migmatitic, banded norito-granitic gneisses, metanorites, kinzigitic gneisses (garnet -
cordierite - sillimanite - spinel gneisses), amphibolites, noritic gneisses, and augen
gneisses. The rock show evidence of intense stretching (boudinage, blastomylonite texture,
small-scale banding, etc.) and several episodes of migmatization.

Return to Monstremyr and follow the path to Vardefjell.

f.

Vardefjell: complex rock formed at the contact between the envelope and the (quartz-)
mangeritic unit: small angular mafic-rich inclusions in a mixture of quartzo-feldspathic
leucocratic material with porphyritic jotunite. Leuco-granitic patches. Continue to the
South and follow the banded gneisses up to the Breimyrknutan body.

. Breimyrknutan: small body of charnockite (= hypersthene granite) showing intrusive

contact against the banded gneiss unit. It is a massive, unfoliated, coarse-grained rock
(anal. 13) emplaced in a late tectonic stage possibly in close chronological relationship
with the Hidra body.

. Banded gneisses from the envelope and immediately at the contact with the Hidra body,

continuous unit of leucogranitic gneiss (vertical lineation) (anal. 16).

Porphyritic jotunite (anal. 1 and 2) at the margin of the Hidra body containing large (up to
30 cm) phenocrysts of blue plagioclase. Variation in the phenocrysts/matrix ratio.
Increasing proportion of phenocrysts towards the centre of the body. Coarse-grained
leuconorite of the Hidra body (orthoculumate structure ) (Demaiffe and Hertogen 1981).
Stockwork of acidic dykes.
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Fig. 1 4.4. AFM diagram (Na,O + K,O - FeO + 0.9 Fe,0; - MgO) of rocks given in Table 1.4.1.

View on the Hidra body and its eastern contact with the envelope. Follow the path eastward
through Héland (abandoned) to Itland.

j. Cross-section through the monotonous coarse-grained Hidra leuconorite. Locally blue
plagioclase phenocrysts (c. 20 cm) and acidic (graphic) pegmatitic dykes.

After Itland, follow the gravel road on 300 m and stop on top of the slope.

k. Foliated Farsund charnockite (anal. 15) with conspicuous blastomylonitic texture.
Return to road 44, follow it to Flekkefjord and then to Moi.

Comments

A. The intrusion situated between Ana-Sira and the envelope has been considered as the
southern prolongation of the Bjerkreim-Sokndal lopolith (Demaiffe 1972) and,
consequently, called the Apophysis of Bjerkreim-Sokndal. Field studies and geochemical
data (Bolle 1998) have revealed that this intrusion in its northern part is a conduit by which
(quartz) mangeritic material (anal. 12) from the uppert part of the Bjerkreim-Sokndal has
escaped. South of Lundevatn, this material is mingled with a jotunite magma (anal. 3, 4)
giving rise to fine-grained rounded inclusions (anal. 4, 7), hybrid porphyroidic jotunite
(anal. 5, 6) and mangerite (anal. 8-11).
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B. The Breimyrknutan charnockitic body (Wilmart 1982) matches the experimental eutectic
obtained by Wendlant (1981). It could have been produced by virtually in situ anatexis
under granulite facies conditions (dry conditions or high Pco, of the supracrustal series, in
which it is emplaced. CO;-rich fluid inclusions are present (Wilmart & Duchesne 1987).
The necessary heat for the charnockitic anatexis can have been provided by the nearby
Hidra intrusion. Both bodies are undeformed and thus late in the tectonic evolution.

C. The supracrustal character of the envelope is evidenced by the occurrence of aluminous
gneisses (pelitic rocks), as well as by metaquartzites. Metabasites are likely to represent
former volcano-sedimentary material. Preliminary data on the major and trace element
geochemistry of these rocks indicate that no simple answer can be given to the question of
the origin of the basic rocks (Jacques de Dixmude 1978; Wilmart 1982). Metasomatic
enrichment of alkalis is obvious in F-rich biotite-bearing amphibolites (K,O up to 2.3%;
K/Rb = 50; F up to 2000 ppm) (Roelandts et al. 1987). The augen gneisses and the granitic
gneisses interbedded in the series were possibly former grauwackes and rhyolitic tuffs,
respectively.

Application of various orthopyroxene-clinopyroxene geothermometers to the metabasites
yields the following equilibrium temperatures (Wilmart & Duchesne 1987): 840° (Wells
1977), 800°C (Wood & Banno 1973) and 650° (Lindsley & Andersen 1983). Garnet-
cordierite-plagioclase-sillimanite-quartz assemblages in neigbouring metapelites give
values around 600°C and 3 £ 0.5 kb by means of several geothermobarometers (Thompson
1976; Martignole & Sisi 1981; Newton & Haselton 1980; Aranovitch & Podlesskii 1983).

Armoured relics of symplectic quartz + spinel in garnets suggest peak temperature around
1000°C and a final equilibrium attained by decreasing temperature (Wilmart & Duchesne
1987). In the Breimyrknutan charnockite, opx-cpx geothermometry gives a minimum
temperature of 800°C (host-pyroxene and exsolution lamellae), in agreement with the high
T conditions one would expect for dry anatexis.

Application of Bohlen and Boettcher’s (1981) experimental results on the opx-olivine-
quartz equilibrium yields a minimum pressure of 5 kb for the emplacement of the Hidra
charnockitic dykes (see below). It appears that the pressures recorded are 1-3.5 kb lower
that those recorded in the quartz mangerites of the Bjerkreim-Sokndal lopolith (Wilmart &
Duchesne 1987; Wilmart et al. 1991). Though the aluminous gneisses on which the
thermobarometry is calculated are closed to the contact with Ana-Sira and the Apophysis,
it can be suspected that the P,T conditions measured do not relate to the emplacement of
the igneous masses, but to a later stage of retrograde evolution.

D. The Hidra massif provides a rare opportunity for observing the relationship between the
central coarse-grained leuconorite and the border facies, which is a fine-grained (300 to
500 um) porphyritic (phenocrysts Angs from 2 to 20 cm) (Duchesne 1971; Demaiffe et al.
1973) (anal. 1 and 2). Trace element geochemistry (Duchesne et al. 1974) of the jotunite
shows no Eu anomaly (fig. I 4.5) and a relatively high Sr content. These data are strong
evidence in favour of the jotunite being the parental magma of the body and the border
facies being the equivalent of the chilled margin of shallower intrusions. On these grounds,
Duchesne & Demaiffe (1978) have suggested that jotunitic/jotunitic magmas can be
parental to andesine anorthosites. Demaiffe & Hertogen (1981) and Weis & Demaiffe
(1983) provided a description of the petrology, geochemistry and Sr and Pb isotopic
compositions of various rock-types from the Hidra massif and have calculated a fractional
crystallization model with assimilation (AFC) starting from a jotunitic magma and
producing anorthosite and leuconorite complementary to the acidic dyke network. They
have to assume the early separation of an Fe-Ti-P-rich cumulate in order to account for the
evolution towards acidic rocks.
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Geochronological studies (Pasteels et al. 1979) give an age close to 930 Ma, which is late
in the magmatic evolution of the province. The lack of any deformation structure of the
plagioclase precludes any tectonic movement during or after the crystallization process (a
rather unusual feature for an anorthosite body!). The magma chamber was created by the
opening of the supracrustal series, a movement possibly initiated by the emplacement of
the nearby, older Farsund charnockite intrusion.
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Fig. I 4.5. Rare earth element distribution in the Hidra massif (chondrite-normalized REE patterns). A: whole-
rock samples. B: unzoned cores of two large plagioclase crystals from anorthositic orthocumulates (AP) and of
two composite plagioclase phenocryst samples from the border jotunites (JP). Also plotted are the data for a
pyroxenite (PY) and an orthopyroxene (OP) megacryst (from Demaiffe & Hertogen, 1981).

Locality 4.4 (1311.4; L K550-625) THE HOGSTAD LAYERED INTRUSION

From Kvanvig along road 44, take a small road to the south.

This small intrusion (2 km x 200 m) has been subdivided into three units which are from the
base to the top : banded norites, spotted leuconorites (with opx oikocrysts) and homogeneous
norites (Boutefeu 1973; Castellani 1993; Vander Auwera & Duchesne 1996) (Fig. I 4.6). The
rocks display a subvertical planar lamination and locally, a subvertical lineation. The norites
and leuconorites are essentially made up of plagioclase and orthopyroxene with minor augite
and accessory apatite, ilmenite and magnetite. Late biotite and amphibole locally occur
around Fe-Ti oxides. Plagioclase, orthopyroxene and ilmenite are cumulus phases in the
whole sequence. Magnetite, apatite and clinopyroxene are postcumulus phases in the banded
norites and become cumulus phases in the middle (magnetite) and upper parts (apatite,
clinopyroxene) of the intrusion (Fig. I 4.6). Plagioclase and orthopyroxene show evidence of
granulation and deformation (bent twinning, kinks, ondulous extinction).

Microprobe data display a restricted range of cryptic layering in plagioclase (Anso-Ans7),
orthopyroxene (Engs-Ensg) and augite (Mg# = 0.75 to 0.65), which indicates a small extent of
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fractionation (Fig. I 4.7). The Cr, Ni and Co content of ilmenite and magnetite as well as the
REE content of plagioclase suggest that the spotted leuconorites correspond to a new magma
influx and thus that the intrusion results from fractional crystallization of two distinct magma
batches.

Major and trace elements content of minerals indicate that the parent magma of the intrusion
is similar in composition to a primitive jotunite slightly less magnesian than the Tjorn chilled
margin of the nearby Bjerkreim-Sokndal intrusion (sample 80123a of Duchesne & Hertogen
1988, and of Vander Auwera & Longhi 1994). Moreover, although this small magma
chamber is enclosed in the Ana-Sira anorthosite, these intrusions have different parent
magmas. Finally, the Hogstad body was emplaced at a pressure of 5 kb or less and the
deformed textures observed in the intrusion were likely induced by the synemplacement
deformation linked to the diapiric uprise of the Ana-Sira anorthosite. This process has
probably also induced the subvertical position of the layering.
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Fig. I 4.6. Geological map of the Hogstad layered intrusion.
Legend: 1: (banded) norite; 2: spotted leuconorite; 3:
homogeneous norite; 4: anorthosite (Ana-Sira massif); 5:
undifferentiated rocks from the Apophysis (after Vander
Auwera & Duchesne, 1996). probably also induced the
subvertical position of the layering.
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Fig. 1 4.7. Generalized cumulus sequence and cryptic layering in the Hogstad body. Sample numbers refer to the
most representative samples of the different units. Petrographic type in brackets: leuconorite (L) or norite (N).
Dashed line: intercumulus status; continuous line: cumulus status. Plagioclase and pyroxene composition
correspond to the most An-rich and most magnesian compositions respectively observed in each sample. Modal
proportions of minerals from Boutefeu (1973).

Return to Moi.
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Locality 4.5 (1311.4; LK539-711) VOREKNUDEN: ACIDIC QUARTZ MANGERITE
FROM THE APOPHYSIS

Coming from Moi or Mydland, take the road to Navrestad-Avedal. Drive ca 500 m to attain
the Voreknuten track which starts on the western side of the road. Turn into the track and, a
bit further on, pass through a barrier closed with a padlock (the key may be obtained at the
Kraftverk of Moi). For ca 750 m, from the barrier to the eastern shore of a small lake
(Kvedlandsvatnet), the track cut across the southern tip of the Garsaknatt leuconorite outlier
(some outcrops are visible along the track); and after the lake, in the (steep!) slope to the
Vorknuten, it scores a ca 500-m-large unit of granulite-facies banded gneisses which separates
the Garsaknatt massif from the Apophysis (Fig. I 4.8). Park at the end of the track, near a
small building, at the foot of the antenna which caps the Voreknuten (542 m).

I:I Granulite-facies gneiss of variable Foliated (quartz) mangerite
hthOlOgy (banded gnelSS) (with amphibole poikilocrystals)
A Zoned amphibolite xenolith - Fﬂ;gﬁ% ggﬁ%ﬁgﬁ;ﬁ;‘mﬂy mafic-rich facies with

N Dyke-like leucocharnockitic xenolith - Dyke and sheet of the jotunitic kindred

Anorthosite - leuconorite d Dolerite dyke (from the Egersund swarm)

N Foliation with dip value

200 m )
hj d) Lake emTm Track @ to (@ Points described in the itinerary

Fig. 1 4.8. Geological sketch map of the Apophysis in the Voreknuten surroundings.
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Fresh outcrops of coarse-grained quartz mangerite. The rock is strongly deformed, and
displays sub-vertical mineral foliation and lineation. Note the winged aspect (usually
symmetrical) of K-feldspar porphyroclasts. Presence of some elongated, cm- to dm-sized,
zoned amphibolite xenoliths from the high-grade country rocks, which are transposed
parallel to the lineation.

This mangeritic rock is the dominant component of the Apophysis in the area and is
usually more evolved than in the southern part (see Chapter 4 and Table 4.1 for
information about the geochemistry). The foliated aspect, with steep dips, is a typical
feature of the whole Apophysis and of a marginal zone developed in the BKSK acidic
rocks, along their eastern contact. This strongly deformed area has been interpreted as a
sub-vertical, syn- to post-magmatic shear-zone, possibly accomodating differential gravity-
induced movements between the eastern part of the Rogaland anorthosite province and the
gneissic country rocks (Bolle et al. 1997; 2000). More structural data on the granulitic
gneisses and the Ana-Sira anorthosite adjacent to this zone are however needed to better
constrain this thesis.

Climb up to the Voreknuten top.

b.

Viewpoint. Strong contrast in the landscape between the Apophysis naked hills, mainly
made up of quartz mangerite, and the hollows immediately to the east and the SE, occupied
by rocks from the metamorphic envelope; straight contact beautifully displayed to the
south and which runs a few metres below the Voreknuten top. Towards the NE, the
wooded hills are made up of leuconorite from the Garsaknatt outlier; and to the west,
towards the sea, dark coloured mounds belong to the Ana-Sira anorthosite massif.

Go down to the east, towards the track along which it will be proceeded northward for some
tens of metres.

C.

d.

Contact between the Apophysis foliated quartz mangerite and the banded gneisses,
followed by a small cross-section through these latter. Centimetre- to decimetre-scale,
irregular alternances of felsic (charnockitic) and mafic (amphibolitic, metanoritic) layers
and lenses, with some metaquartzite intercalations. Local migmatitization.

Outcrops of coarse-grained jotunite, with poikilocrystals of brown amphibole, some of
them being included in dm-sized quartzofeldspathic patches with pegmatitic texture.

These outcrops are part of an off-shoot, escaped from a network of jotunite lenses
associated with the (quartz) mangerite in the Apophysis northern part. The jotunite lenses
correspond to pockets of liquid laden with pyroxenes, oxides and apatite, as demonstrated
by the relatively high mafic-mineral content (40-55%) and important Fe-Ti-P enrichment
(Table 4.1) of many samples (FTP rocks) (Chapter 4). The aspect of the jotunite lens
network, a kind of huge shlieren structure, suggests that the pockets where elongated and
dislocated in the flowing (quartz) mangerite magma (Bolle et al. 1997). Major and trace
element geochemistry, and Sr-Nd isotopes (Bolle 1998; Bolle et al. in prep.) preclude
however any comagmatic relationship with the acidic host, in the form e.g. of a flow
differentiaton.

*kk
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Itinerary 5

THE ROGALAND IRON-TITANIUM DEPOSITS
(by J.C. Duchesne and H. Schiellerup)

This itinerary will allow us to visit a few spectacular outcrops of typical orebodies with easy
access, including the world-class ilmenite deposit of Tellnes in operation by Titania A/S.

From Moi, take the E39 (E18) to the North, after driving through the Drangsdalen, at Eide,
take road 501 to Rekeland and Hauge. At Rekeland turn right on road 44 and drive to Svénes.

Locality 5.1 (12111.1 ; LK270-764) THE SVANES DEPOSIT

Outcrops of the Svéanes deposit can be observed along the road. The deposit is described in the
Appendix of Chapter 5.

Drive to Egersund and in the locality take on the right the road to Koldal. Drive to Koldal,
Heggdal and on the south side of the Kydlandsvatn and stop at Kydland.

Locality 5.2 (1211.1 ; LK349-778) THE JERNELD DEPOSIT

The path to the Jerneld deposit follows a 30 m-thick dolerite dyke. After some 1300 m, when
the Spjodevatnet lake comes into view, turn right. The Jerneld deposit is described in the
Appendix of Chapter 5.

Drive back along the same road and stop at the houses 500 m east of Stokkatjerna. Take the
path to the SE.

Photo I 5.1. Norito-charnockitic septum (Norio-granitic zone of P. Michot) in the surroundings of the Redemyr
deposit. A late leucocharnockitic dyke cuts across the septum.

Locality 5.3 (1211.1 ; L. K284-798) THE ROUDEMYR DEPOSIT

On the path to the old mining site, one cuts across the Puntavoll-Lien norito-granitic zone
(NGZ), as defined by Michot (1955) (see Chapter 1), which is some 50 m thick here. It is
made up of alternating layers of equigranular norite and blastomylonitic leucocharnockite
(Photo I 5.1). An inclusion of anorthosite (10 ¢cm in diameter) can be observed. A thin
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undeformed magnetite-bearing charnockitic dyke cuts the septum at a high angle. The
Redemyr deposit is described in the Appendix of Chapter 5.

Drive back to Egersund, take road 44 to the south and at the first crossing, turn right toward
Hestnes. Stop in the village at a small playground. Walk uphill towards Lérabakken. The
deposit is not easy to find in a small gully at the contact with ZNG rocks. The accurate
location is 3 24843-64 797793.

Locality 5.4 (1211.1 ; LK249-797) THE HESTNES NELSONITE DEPOSIT

The Hestnes deposit is described in the Appendix of chapter 5.

Drive back to Hauge, then take the road to Flekkefjord and shortly after leaving the centre,
take the bridge to the left and the small road to Mydland. Some 4 km further on, take a small
road on the left to Letupt. Drive ca. 2.5 km and stop some 500 m before Lotupt.

Locality 5.5 (1311.4 ; 1.K447-761) THE FLORDALEN DEPOSIT

The Flordalen deposit is described in the Appendix of Chapter 5. The outcrops are along the
road and at the entry of an old shaft.

Drive back the same road and at Sandbekk, take the bridge entering the old buildings of
Titania and immediately after the bridge, take to the right to the end of the road.

Locality 5.6 (1311.4 ; 1.K445-722) THE STORGANGEN DEPOSIT

The Storgangen deposit is described in the Appendix of chapter 5.

Drive back in direction of Hauge and before the bidge, turn left along a small road to Amot
and Blafjell

Locality 5.7 (1311.4 ; LK469-714) THE BLAFJELL DEPOSIT

The Blafjell deposit is described in the Appendix of chapter 5. A description of the mining
history can be found at the site.

Drive back to the bridge and after it take road 44 to Flekkefjord. Some 2km further on, take
the private road to Tellnes (Titania A/S).

Locality 5.8 (1311.4 ; L.K490-690) THE TELLNES DEPOSIT

The Tellnes deposit is described in the Appendix of chapter 5.

Drive back to Moi through Rekeland and Eide (road 504) or through Mydland, Liland, and
Skaland along Lundevatnet.
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