
Geological Survey of Norway
N-7441  Trondheim, Norway
Tel.: 47 73 90 40 00
Telefax 47 73 92 16 20 REPORT

Report no.:  2000.84 ISSN 0800-3416 Grading:  Open
Title:

 Prediction of the spatial structure of censored data by robust statistical methods

Authors:
 Peter Filzmoser and Clemens Reimann

Client:
 Ministry of the environment/NGU

County:
 Finnmark (N-Finland, NW-Russia)

Commune:

Map-sheet name (M=1:250.000)
 None

Map-sheet no. and -name (M=1:50.000)

Deposit name and grid-reference: Number of pages:  43 Price (NOK):   215,-
Map enclosures: 

Fieldwork carried out:
 1995

Date of report:
07.08.2000

Project no.:
 2590.02

Person responsible:

Summary:

Censored data are a well-known problem when dealing with regional geochemical data. Often many

analytical results for some of the most interesting variables, for example gold (Au), are reported as below

detection limits. With a high proportion of censored data, distribution estimators and many statistical tests

will not perform. The regional structure of the data as displayed in a geochemical map may also get lost or

be a poor approximation of reality. However, very many other variables are often available from the same

sample sites. A method to recover censored data, based on robust principal component analysis (PCA) and

robust multiple regression is introduced. All other available information from each sample site is used to

predict the censored data. It is first used to recover the regional data structure for a test data set where the

regional distribution is known. Subsequently it is used to predict the regional data structure for a number of 

elements in topsoil and C-horizon samples from the Kola Project where a large proportion of the reported

analytical results was below detection. Although the method tends to an overestimation of the predicted

values, the regional structure of the data can be recovered, thus permitting more effective use of the

geochemical maps in mineral exploration campaigns.
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1. INTRODUCTION

When analysing geological samples, censored data, i.e., caused by a high proportion of

samples returning values below detection, are a difficulty commonly encountered for a

number of elements. In a first attempt to deal with the problem, geochemists often tend to

replace all results below the detection limit with the value of the actual detection limit or ½ of 

that value. Doing this, at least the information that a low concentration can be expected at this 

sample site is preserved and geochemical maps covering all sample locations can be drawn.

Statistically, however, this approach is not acceptable. A high proportion of censored data

results in many problems in conventional statistical analysis (e.g., Cohen, 1959; El-Shaarawi,

1989; El-Shaarawi and Esterby, 1992; Helsel and Hirsch, 1992). For example, all estimators

of location and spread will be seriously biased. A number of techniques have been suggested

to predict censored data (e.g., Miller, 1976; Dempster et al., 1977; Buckley and James, 1979;

Schmee and Hahn, 1979; Aitkin, 1981; Stein, 1992; Militino and Ugarte, 1999). As long as

information about the censored part of the data population is only needed for a more reliable

estimate of location or for statistical tests, the problem is relatively easy to overcome. For

example the cumulative distribution function can be used to predict median and percentiles

for censored data.

In geochemical mapping, however, the problem is different. When strongly censored data are

used for geochemical mapping, noisy maps, showing little or no regional structure, will be the

result, even when smoothing methods like kriging are used to produce a smoothed surface

map (see Reimann et al., 1998). The problem cannot be overcome by estimating the

population because for geochemical mapping, a concentration at each individual sample site is 

needed. Strongly left-censored data were encountered for a number of interesting elements

(e.g., As, Au, Cs, Hg, Mo, Sb, Ta, U) in a large environmental geochemical mapping project

in the European Arctic. From 1992-1998 the Geological Surveys of Finland (GTK) and Norway 

(NGU) and the Central Kola Expedition (CKE) in Russia carried out a major geochemical

mapping project (see World Wide Web site http://www.ngu.no/Kola) across a 188,000 km2 area 

north of the Arctic Circle (Figure 1). In the summer and autumn of 1995, terrestrial moss, topsoil 

(0-5 cm), organic topsoil (humus 0-3 cm or less if the organic layer was thinner than 3 cm) and

complete podzol profiles (5 horizons) were sampled throughout the survey area. The average

sampling density was one station per 300 km2. The whole data set describing the regional
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distribution patterns of up to 50 elements in 5 different sample media is available in the form of a 

geochemical atlas (Reimann et al., 1998). Table 1 summarises the complete analytical program

for topsoil and C-horizon samples and gives an indication for which elements severely censored 

data were encountered due to  insufficient detection limits.

When more than about 30-40% of all values were below detection, the resulting geochemical

maps were generally noisy and had so little information value that many were not shown in the

geochemical atlas (Reimann et al., 1998). The alternative was to show black and white point

source maps marking the location of the high outliers. These maps are collected in Reimann

(1998). However, the regional data structure, as revealed in a complete geochemical map, can

give important hints about element sources and enrichment processes. Thus the question arises

whether or not it is possible to predict the "lower", censored end of a data distribution with high 

enough reliability to recover at least this regional structure. For this purpose it is not necessary to 

get an exact estimate of concentration at each site.

For estimating censored data, regression methods based on ordinary least squares (OLS) have 

been used (Miller, 1976; Buckley and James, 1979; Koul et al., 1981). A method called tobit

regression (Judge et al., 1985; Cohn, 1988) is similar to OLS, with the exception that the

coefficients are fitted by maximum-likelihood estimation. However, these methods, including

the sometimes suggested logistic regression (Helsel and Hirsch, 1992), are still sensitive with

respect to data outliers and do not perform well if more than 25-50% of the data are censored. 

Extreme data outliers and a very high proportion of censored data are, however, very typical

when dealing with, for example, gold analyses. Even one single data outlier (which is

sufficiently large) can cause complete breakdown of classical estimators. An easy way for still 

obtaining stable results is to remove this outlier. However, there are not many situations

where outliers are obvious at first glance. In general it is extremely difficult to identify

“multivariate” outliers, and usually computationally intensive robust methods must be used

for this task (Rousseeuw and Van Zomeren, 1990). 

Another approach, functioning with higher portions of censored data, uses the Expectation-

Maximisation (EM) algorithm (Dempster et al., 1977). By assuming an idealised data

distribution (e.g. log-normality), an alternating scheme is applied for estimating the censored

data. Militino and Ugarte (1999) generalised this algorithm to spatial data. The resulting

estimations are, however, based on the least squares criterion, and thus also quite sensitive
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with respect to outliers. In addition regional geochemical data show almost never a normal or 

a log-normal distribution (Reimann and Filzmoser, 2000).

Thus a different approach, able to handle a high proportion of censored data, imprecise

measurements and extreme data outliers is needed. This situation calls for the use of robust

statistical techniques that are not sensitive with respect to data outliers. These methods will, of 

course, also work for “clean” data although the statistical efficiency is in general lower than

for classical methods. The basic principle of robust methods is to fit the majority of the data.

Robust statistics allows for deviations from strict parametric models and can thus be seen as a 

compromise between parametric and nonparametric statistics (e.g., Hampel et al., 1986). 

One possibility for robustly estimating censored data is to treat the data as a contingency

table. By assuming that each entry in the table consists of a general mean, a row effect, a

column effect, and an error term, the cells with censored data can be estimated. Croux and

Filzmoser (1999) developed a method for robustly estimating such cells based on robust

alternating regression. However, if one column (or row) includes more than 25% censored

data, this method will not give reliable results.

An alternative is to use robust regression for the prediction. Nowadays a variety of robust

regression techniques exist which are also fast to compute (Rousseeuw and Leroy, 1987). As

a general rule, these techniques require more observations than variables. In practise the

number of observations should be at least twice as large as the number of variables or more,

depending on the method. When dealing with a large amount of censored data and a large

number of available predictor variables, as it is the case for the Kola data, this prerequisite is

not fulfilled. The use of only some selected predictor variables may cause loss of information. 

In such a case the most important information of the complete data set can be extracted by

first performing a robust principal component analysis (PCA) on the predictors. Like all other 

robust methods a robust PCA has the advantage of not being influenced by data outliers. The

robust PCA method used here is based on the idea of projection pursuit and was introduced by 

Li and Chen (1985). Filzmoser (1999) successfully used a slightly modified method (Croux

and Ruiz-Gazen, 1996) for the Kola data set. This method has several further advantages. For 

example the number of observations can be smaller than the number of variables; it is not

necessary to compute all principal components, i.e., one can stop at a desired number of

components, and a fast algorithm exists already (Croux and Ruiz-Gazen, 1996).
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In this report a statistical method is used based on a combination of robust PCA and robust

regression, using all other available information to predict one censored variable in order to:

- Test the method by using a variable where all data are known but the lower 50, 60, 70 and 80% 

of the distribution were deleted and then predicted. Regional smoothed surface geochemical

maps are constructed using the original and the predicted values (80% deleted).

- Predict the missing results for the exploration-relevant elements As, Au, Cs, Hg, Mo, Sb, Ta, U 

and Zn in Topsoil and/or C-horizon samples from the Kola project, and to construct regional

maps based on these results. Note that the regional structure cannot be recovered for elements

where more than about 80% of all analytical results are below detection.

2. THE KOLA PROJECT DATA

Sampling

A detailed description of the sample-site selection criteria and the sampling method is given

in Äyräs and Reimann (1995) and in Reimann et al. (1998). Complete podzol profiles were

dug at carefully selected sites and about 2 kg of the C-horizon material was sampled. The

samples were air dried and subsequently sieved to <2 mm using nylon screening. Topsoil

samples were taken from the uppermost 5 cm of the soil layer, independent of soil horizons. A

large composite sample from at least 10 sites within a 100 m x 100 m area was taken. The

samples were air dried and sieved to <2 mm using nylon screening.

Chemical analyses

Analytical procedures and all analytical results are detailed in Reimann et al. (1998). In short, 

a 2 g subsample of the <2 mm fraction of the C-horizon samples was digested in aqua regia

(3:1 HNO3:HCl) at 90o C at the GTK laboratory. The solutions were analysed by ICP-AES for 

32 elements (Niskavaara, 1995), and by graphite furnace atomic absorption spectrometry

(GFAAS) for Ag, As, Cd and Pb. A second aliquot was analysed after pre-concentration using 

reductive co-precipitation (Niskavaara and Kontas, 1990) for Bi, Sb, Se and Te by GFAAS.

Aqua regia extraction will not result in total element concentrations. The analysed values will 

strongly depend on the differences in mineralogy between samples, and will generally reflect

secondary geochemical processes such as weathering, scavenging of elements by Fe-

oxides/hydroxides and/or the amount of sulphides and clay minerals in the individual sample.
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Furthermore the C-horizon samples were analysed for major elements (Al, Ca, Fe, K, Mg,

Mn, Na, P, Si, Ti) by XRF in NGU laboratory. Both topsoil and C-horizon samples were

analysed for more than 30 other elements using instrumental neutron activation analyses

(INAA) by Activation Laboratories Ltd. in Canada. These two techniques result in total

element concentrations that will largely be governed by geological processes. Table 1

summarises the complete analytical program for topsoil and C-horizon samples, showing the

detection limits and the percentage of samples below detection as well as indicating which

elements have been included as explanatory variables in this study.

Data Analysis

For robust PCA and robust multiple regression analysis the S-PLUS software package

(Mathsoft – http://www.splus.mathsoft.com/, Venables and Ripley, 1997) was used. For variables 

with a low percentage of values below detection, results for these samples were set to ½ of the 

detection limit. All geochemical maps were produced using the DAS-software package

(Dutter et al., 1992). Kriging was performed using the software package GEOSAN (Dutter,

1996). For the maps using the original Au data another approach to mapping was used. These 

values are mapped with just one symbol, an expanding dot, whose size grows in relation to

concentration as suggested by Björklund and Gustavsson (1987).

3. ROBUST PCA AND ROBUST REGRESSION TO PREDICT CENSORED DATA

In the following, a brief description of the methods used to predict the censored data is given. 

As a first step the raw data are log-transformed and standardised to at least approach

normality and avoid problems with heteroscedasticity. Let },,,{ 21 nxxxX Κ=  be a data

matrix with the observations p
ix ℜ∈  ( ni ,,1 Κ= ). Assume that the first (k-1) projection

directions (i.e. robust estimations of the eigenvectors) 11 ˆ,,ˆ −kγγ Κ  are already known. Then a 

projection matrix is defined by 

,1 pIP = ∑
−

=

−=
1

1

Tˆˆ
k

j
jjpk IP γγ .

kP  stands for projection on the orthogonal complement of the space spanned by the first (k-1)

projection directions. The k-th projection direction is then defined as the maximum of the

function
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under the conditions 1T =aa  and aaPk = . The latter condition ensures orthogonality to

previously found projection directions. nS  is a robust measure of spread, e.g., the median

absolute deviation (MAD). For a sample ℜ⊂},,{ 1 nyy Κ  the median absolute deviation is

defined as

|med|med486.1),,(MAD 1 j
j

i
i

nn yyyy −=Κ

where the constant 1.486 is a consistency factor for normal distribution. Taking the classical

sample standard deviation for nS  would result in classical PCA.

Croux and Ruiz-Gazen (1996) also give an algorithm for the above maximisation problem

since in general no exact solution exists. Instead of scanning the whole space of possible

solutions, it is proposed to check for directions a belonging to the set
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
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nµ̂  is a robust location estimator like the 1L -median which is defined by

∑ −=
=ℜ∈

n

i
in xX

p 1
minimize)(ˆ µµ

µ
.

It is very robust (breakdown value 50%) and orthogonally equivariant (Hössjer and Croux,

1995). As a simple but crude approximation one could also take the median of each

component.

Robust PCA reduces the number of variables to a number pk <  of components

}1);,,{( 1 nizz iki ≤≤Κ  including the main variation of the data set. For choosing k the same

rules as used in classical PCA can be applied (e.g., the scree-plot; Jackson, 1991). These

principal components (PCs) can now be used as predictors for the censored variable

(response). Note that the problem of co-linearity can never occur because the PCs are

orthogonal to each other. Since the prediction should not be influenced by outlying

observations, robust regression is advisable. Very robust regression techniques with good

statistical properties are LMS (least median of squares) and LTS (least trimmed squares)

regression (Rousseeuw, 1984). For the latter a fast algorithm was developed recently

(Rousseeuw and Van Driessen, 1998). 
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Suppose that n-m out of n observations of the response variable are below the detection limit. 

Without loss of generality, these n-m observations can be arranged as the last observations in

the original data set (and hence the same arrangement for the PCs). For regression only the

first m values can be used. The residual ir  of observation i )1( mi ≤≤  is defined as the

difference between the observed response value iy  and the corresponding fitted value, hence

)ˆˆˆ()ˆ,,ˆ( 1100 ikkiiki zzyr βββββ ++−=Κ .

The regression coefficients kβββ ,,, 10 Κ  are estimated according to the LTS criterion which 

is given by

∑
=

h

i
miir

k 1
:

2

)ˆ,,ˆ(
)(minimize

0 ββ Κ

where mmmm rrr :
2

:2
2

:1
2 )()()( ≤≤≤ Λ  are the ordered squared residuals. The LTS criterion 

resembles that of least squares but does not count the largest squared residuals, thereby

allowing the LTS to steer clear of outliers. A choice of mh ⋅≈ 75.0  is a good compromise

between robustness and statistical efficiency. Although the parameter estimations are not

consistent because the observations are spatially dependent this robust regression method will 

still give quite reliable results.

At the basis of the estimated regression coefficients kββ ˆ,,ˆ
0 Κ  and because the complete

matrix of principal component scores is available, the values of the response variable below

the detection limit can be predicted by

ikkii zzy βββ ˆˆˆ
110 ++=

for nmi ,,1 Κ+= . The result is a set of predicted data for the censored part of the

distribution. This is combined with the upper existing data and then used for geochemical

mapping. This approach guarantees that the original real information is not lost but used in the 

maps.

The quality of the fit can be determined by the coefficient of determination also called 2R .

For the LTS this is a robust measure which is defined by:
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where the denominator has to be minimised over y~  (Rousseeuw and Leroy, 1987).

4. TEST

To test the prediction quality of the suggested method, several elements (Ag, As, Bi, Cr, Pb)

without any censored data were used. As an example, Fig. 2 (upper left) shows the CDF-

diagram for Cr, analysed by INAA. To simulate a detection limit problem, first the lower 50% 

and then the lower 60%, 70% and 80% of all values were deleted (Fig. 2 – upper right: Cr

with 80% of the data deleted), and then predicted using the remaining values and all other

available variables. For the example Cr with 80% censoring the robust coefficient of

determination was 0.7. This indicates that the fit for the existing data is quite good. A detailed 

analysis of the residuals is shown in Fig. 3. The structure of the plot is influenced by the fact

that the laboratory delivered Cr-concentrations rounded to 10 mg/kg steps above 100 mg/kg

(see CDF-diagram for Cr, Fig. 2). The plot shows clearly the existence of outliers which are

plotting outside the critical values ±2.5. Fortunately such outliers do not influence robust

regression.

Because the regression model used for the prediction is fitted to the upper 20% of the data

only, an increasing tendency to overestimated concentrations at the lower end of the

distribution was observed. One of the reasons can be visualised in the CDF-diagram for Cr

(Fig. 2) where several breaks occur in the curve. This problem could not be overcome and

requires further research. It means that the actual concentration at each site cannot be reliably

predicted. However, most of the data structure as visible in the maps could be recovered.

Figure 4 shows as an example two maps for Cr. One is based on the original data the second

one on the predicted concentrations, combined with the original values from the upper 20% of 

the distribution. The map based on the predicted concentrations demonstrates that the original 

regional structure is still visible. The actual concentrations, however, have changed

significantly at the lower end of the distribution. All other elements tested (Ag, As, Bi, and

Pb) showed comparable results. The upper limit for a "successful" prediction of the regional

data structure was between 70% and 80% of censored data. As this value depends on the
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predicted element and may also depend on the number of available variables for the

prediction it may be special for the Kola data set and should not be taken as a generalisation.

5. APPLICATION FOR GOLD

Following the successful test, the regional structure for Au was predicted for the C-horizon

and the Topsoil samples. The original data distributions of the Au analyses in C-horizon and

Topsoil samples as received from the laboratory are given in Fig. 2 (lower two CDF-

diagrams). Figure 5 shows a combination of Au maps. The upper maps show the original Au

values as point source map, based on the "growing dot technique" (Bjørklund and Gustavsson, 

1987). In the middle, kriging (Journel and Huijbregts, 1978) is used to produce smoothed

colour surface maps. Both maps show the extremely "noisy" nature of the gold data. They can 

hardly be used to detect any regional structure in the data. Only some "hot spots" can be

defined. Figure 6 shows the variograms obtained when using these data. These variograms

indicate that the regional distribution is governed by the well-known nugget effect. The

nugget effect is an artefact of insufficient precision in sampling and analysis (Harris, 1982)

and not a necessary characteristic of the regional gold distribution. No regional structure

exists in these data. The lower two variograms (Fig. 6) show the situation after the real data

were combined with the predicted concentrations for the censored part of the distribution. A

regional dependency is now visible. The lower two smoothed surface maps (Fig. 5) are based

on the predicted concentrations, combined with the existing data and were kriged using these

variograms. Both maps show a very clear regional structure, which could, for example, be

used for developing gold exploration concepts for this area. For Au the robust coefficient of

determination was 0.4 for the C-horizon and 0.45 for the Topsoil. 

6. APPLICATION FOR OTHER ELEMENTS

Given the good results obtained so far, the technique was subsequently used routinely to

recover the regional structure for a number of other elements that showed severe detection

limit problems (see Table 1), but that are of great interest for mineral exploration. Table 2

summarises for which elements the prediction was carried out and gives the coefficients of

determination. In figures 7 to21 the resulting colour surface maps are presented in the same

format as used for the colour maps given in the Kola Atlas (Reimann et al., 1998).
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7. CONCLUSIONS

A combination of robust PCA and robust multiple regression analysis can be used to recover

information on the inherent regional data structure even for strongly left-censored variables.

Although the actual concentrations will be overestimated because the model is build on the

upper end of the data distribution, the geochemical map will still show the regional

distribution for the predicted element. Results get better when many explanatory variables are 

available. For the Kola data set, even with up to 80% of censored data, the regional structure

could be successfully recovered. The recovery of the regional data structure will allow much

more effective use of the resulting geochemical maps from censored data in regional mineral

exploration campaigns. 
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10. TABLES

Table 1: Analytical program for the C-horizon and the Topsoil samples, Kola Project. DL:

detection limit, % < DL: percentage of samples that reported below the detection limit. 

Table 2: Predicted variables for topsoil and C-horizon and coefficient of determination.

11. FIGURES

Figure 1: General location map of the Kola Project area.

Figure 2: Cumulative distribution function (CDF-) diagrams for: upper left: Cr, original data;

upper right: Cr after removal of 80% of the data at the lower end (artifical censoring), lower

left: Au in the C-horizon (original data); lower right: Au in Topsoil (original data).

Figure 3: Residual plot of LTS regression for Cr with 80% of censored data.

Figure 4: Maps showing the original regional distribution of Cr in the C-horizon samples and 

the regional map based on predicted values; 80% of all values at the lower end of the

distribution were removed and then predicted. 

Figure 5: Maps showing the regional distribution of Au in the C-horizon and Topsoil from the 

Kola Project area. Upper maps: original data mapped using the growing dot technique

(Björklund and Gustavsson, 1987); middle: kriged smoothed surface maps using the original

data, lower maps: kriged smoothed surface maps using the original and predicted values.

Figure 6: Variograms as obtained when using the original data and the predicted values.

Figure 7: As in topsoil, 62.9% of all results were below detection.

Figure 8: As in C-horizon, 71.9% of all results were below detection.

Figure 9: Au in topsoil, 74.4% of all results were below detection.
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Figure 10: Au in C-horizon, 72.4% of all results were below detection.

Figure 11: Cs in C-horizon, 61.4% of all results were below detection.

Figure 12: Hg in C-horizon, 56% of all results were below detection.

Figure 13: Mo in C-horizon, 76.5% of all results were below detection.

Figure 14: Sb in topsoil, 50.6% of all results were below detection.

Figure 15: Sb in C-horizon, 75.1% of all results were below detection.

Figure 16: Ta in topsoil, 78.1% of all results were below detection.

Figure 17: Ta in C-horizon, 78.4% of all results were below detection.

Figure 18: U in topsoil, 64.1% of all results were below detection.

Figure 19: U in C-horizon, 48.8% of all results were below detection.

Figure 20: Zn in topsoil, 68.5% of all results were below detection.

Figure 21: Zn in C-horizon, 39.1% of all results were below detection.



ELEMENT NAME UNIT METHOD DL % < DL USED % < DL USED
C-horizon Topsoil

Ag Silver mg/kg aqua regia, GF-AAS 0.001 0.2 YES na
Ag_NAA Silver mg/kg INAA 5 100 NO 100 N0
228Ac Actinium228 Bq/kg Gamma-ray spectroscopy 0.8 na NO 0 YES
Al Aluminium mg/kg aqua regia, ICP-AES 10 0 YES na NO
Al_XRF Aluminium mg/kg XRF 300 0 YES na NO
241Am Americium241 Bq/kg Gamma-ray spectroscopy 0.3 na NO 75.1 NO
As Arsenic mg/kg aqua regia, GF-AAS 0.1 1.7 YES na NO
As_NAA Arsenic mg/kg INAA 0.5 71.9 NO 62.9 NO
Au Gold mg/kg INAA 0.002 72.4 NO 74.4 NO
B Boron mg/kg aqua regia, ICP-AES 3 89.4 NO na NO
Ba Barium mg/kg aqua regia, ICP-AES 0.5 0 YES na NO
Ba_NAA Barium mg/kg INAA 50 0 YES 5.1 YES
Be Beryllium mg/kg aqua regia, ICP-AES 0.05 0 YES na NO
Bi Bismuth mg/kg aqua regia, GF-AAS 0.005 2.5 YES na NO
214Bi Bismuth214 Bq/kg Gamma-ray spectroscopy 0.2 na NO 7.7 YES
Br_NAA Bromine mg/kg INAA 0.5 25.4 NO 5.1 YES
Ca Calcium mg/kg aqua regia, ICP-AES 3 0 YES na NO
Ca_NAA Calcium mg/kg INAA 10000 22.8 NO 55.5 NO
Ca_XRF Calcium mg/kg XRF 50 0 YES na NO
Cd Cadmium mg/kg aqua regia, GF-AAS 0.001 0 YES na NO
Ce Cerium mg/kg INAA 3 0 YES 1.8 YES
Co Cobalt mg/kg aqua regia, ICP-AES 0.2 0 YES na NO
Co_NAA Cobalt mg/kg INAA 1 0.2 YES 1.8 YES
Cr Chromium mg/kg aqua regia, ICP-AES 0.5 0 YES na NO
Cr_NAA Chromium mg/kg INAA 5 0 YES 4.6 YES
Cs Cesium mg/kg INAA 1 61.4 NO 88.1 NO
134Cs Cesium134 Bq/kg Gamma-ray spectroscopy 0.1 na NO 86 NO
137Cs Cesium137 Bq/kg Gamma-ray spectroscopy 0.1 na NO 0 YES
Cu Copper mg/kg aqua regia, ICP-AES 0.5 0 YES na NO
Eu_NAA Europium mg/kg INAA 0.2 0 YES 11.2 YES
Fe Iron mg/kg aqua regia, ICP-AES 10 0 YES na NO
Fe_NAA Iron mg/kg INAA 100 0 NO 0 YES
Fe_XRF Iron mg/kg XRF 200 0 YES na NO
Hf_NAA Hafnium mg/kg INAA 1 0 YES 4.8 YES
Hg Mercury mg/kg aqua regia, CV-AAS 0.06 56 NO na NO
Hg_NAA Mercury mg/kg INAA 1 99.2 NO 99.5 NO
Ir_NAA Iridium mg/kg INAA 0.005 100 NO 100 NO
K Potassium mg/kg aqua regia, ICP-AES 200 0.5 YES na NO
K_XRF Potassium mg/kg XRF 40 0 YES na NO
40K Potassium40 Bq/kg Gamma-ray spectroscopy 10 na NO 1.2 YES
La Lanthanum mg/kg aqua regia, ICP-AES 0.5 0 YES na NO
La_NAA Lanthanum mg/kg INAA 0.5 0 YES 0 YES
Li Lithium mg/kg aqua regia, ICP-AES 0.5 0 YES na NO
Lu_NAA Lutetium mg/kg INAA 0.05 0 YES 7.1 YES
Mg Magnesium mg/kg aqua regia, ICP-AES 5 0 YES na NO
Mg_XRF Magnesium mg/kg XRF 200 0 YES na NO
Mn Manganese mg/kg aqua regia, ICP-AES 0.5 0 YES na NO
Mn_XRF Manganese mg/kg XRF 80 0 YES na NO
Mo Molybdenum mg/kg aqua regia, ICP-AES 0.2 76.5 NO na NO
Mo_NAA Molybdenum mg/kg INAA 1 84 NO 88.1 NO
Na Sodium mg/kg aqua regia, ICP-AES 15 0 YES na NO
Na_NAA Sodium mg/kg INAA 100 0 NO 0 YES
Na_XRF Sodium mg/kg XRF 200 0 YES na NO
Nd Neodymium mg/kg INAA 5 1.3 YES 38.9 NO
Ni Nickel mg/kg aqua regia, ICP-AES 1 0 YES na NO
Ni_NAA Nickel mg/kg INAA 20 86.3 NO 92.8 NO
P Phosphorus mg/kg aqua regia, ICP-AES 7 0 YES na NO
P_XRF Phosphorus mg/kg XRF 40 0 YES na NO
Pb Lead mg/kg aqua regia, GF-AAS 0.2 0 YES na NO
Rb_NAA Rubidium mg/kg INAA 15 6.3 YES 31.5 NO
S Sulphur mg/kg aqua regia, ICP-AES 5 0.5 NO na NO
Sb Antimony mg/kg aqua regia, GF-AAS 0.01 53.9 NO na NO
Sb_NAA Antimony mg/kg INAA 0.1 75.1 NO 50.6 NO

Tab.  1     .



ELEMENT NAME UNIT METHOD DL % < DL USED % < DL USED
C-horizon Topsoil

Sc Scandium mg/kg aqua regia, ICP-AES 0.1 0.2 YES na NO
Sc_NAA Scandium mg/kg INAA 0.1 0 YES 0 YES
Se Selenium mg/kg aqua regia, GF-AAS 0.01 4.1 YES na NO
Se_NAA Selenium mg/kg INAA 3 99 NO 99.2 NO
Si Silicon mg/kg aqua regia, ICP-AES 10 0 YES na NO
Si_XRF Silicon mg/kg XRF 2300 0 YES na NO
Sm_NAA Samarium mg/kg INAA 0.1 0 YES 0.3 YES
Sr Strontium mg/kg aqua regia, ICP-AES 0.5 0 YES na NO
Sr_NAA Strontium mg/kg INAA 500 86.5 NO 92.8 NO
Ta_NAA Tantalum mg/kg INAA 0.5 78.4 NO 78.1 NO
Tb_NAA Terbium mg/kg INAA 0.5 72.4 NO 91.6 NO
Te Tellurium mg/kg aqua regia, GF-AAS 0.003 22.6 NO na NO
Th Thorium mg/kg aqua regia, ICP-AES 3 0.5 YES na NO
Th_NAA Thorium mg/kg INAA 0.2 0 YES 4.6 YES
Ti Titanium mg/kg aqua regia, ICP-AES 0.5 0 YES na NO
Ti_XRF Titanium mg/kg XRF 30 O YES na NO
U_NAA Uranium mg/kg INAA 0.5 48.8 NO 64.1 NO
V Vanadium mg/kg aqua regia, ICP-AES 0.5 0 YES na NO
W_NAA Tungsten mg/kg INAA 1 97.9 NO 94.4 NO
Y Yttrium mg/kg aqua regia, ICP-AES 0.5 0 YES na NO
Yb_NAA Ytterbium mg/kg INAA 0.2 0 YES 3.8 YES
Zn Zinc mg/kg aqua regia, ICP-AES 0.5 0 YES na NO
Zn_NAA Zinc mg/kg INAA 50 39.1 NO 68.5 NO
LOI Loss on Ignition wt.-% GRAVIMETRIC 0.1 0 NO 0 YES
pH pH water extraction, pH-electrode 0.1 O NO 0 YES
EC Electrical Conductivity mS/m water extraction, potentiometric 1 0 NO 0 YES

Tab.  1     .



Variable Topsoil C-horizon Techn.
R2 R2

As 0.34 0.85 INAA
Au 0.45 0.40 INAA
Ca 0.48 0.57 INAA
Cs - 0.81 INAA
Hg - 0.53 CV-AAS
Mo - 0.20 ICP-AES
Sb 0.31 0.70 INAA
Ta 0.49 0.65 INAA
U 0.35 0.58 INAA
Zn 0.37 0.73 INAA

Table 2: Coefficient of determination for the predicted variables
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Figur 1
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Figur 2
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Figur 3
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Figur 4
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Figur 5
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Figur 6
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Figur 7
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