GEOLOGI FOR SAMFUNNET

SIDEN 1858

RAPPORT

Norges geologiske undersøkelse Postboks 6315 Torgarden 7491 TRONDHEIM

ISSN: 0800-3416 (trykt) ISSN: 2387-3515 (online)

Rapport nr.: 2018.023

Gradering: Åpen

Tittel:

Kalkspatmarmor i Evenesmarka og Nestbylia, Evenes og Saltdal, Nordland

Forfatter:Korneliussen, A., R	aaness, A.,	Oppdragsgiver:			
Lynum, R. & Viken, G.		Nordland fylkeskommune og NGU			
Fylke:		Kommune:			
Nordland		Evenes og Saltdal			
Kartblad (M=1:250.000)		Kartbladnr. og -navn (M=1:50.000)			
Narvik og Saltdal		Evenesmarka (1332.3 Tjeldsundet og 1331.4 Evenes) Nestbylia (2129.3 Rognan)			
Forekomstens navn og koordin	ater (UTM sone 33 Ø/N):	Sidetall: 110 Pris: kr 470			
Evenesmarka: 570550/7594760 (sy (nordre del). Nestbylia: 513770/743 513600/7438100 (nordre del)	dlige del), 571500/7601190 6550 (sydlige del),	Kartbilag:			
Feltarbeid utført:	Rapportdato:	Prosiektnr.:	Ansvarlig:		
2017	06.03.2019	376600	Jan 5 Sund Asl		

Sammendrag:

Nordland har gode naturgitte forutsetninger for karbonatforekomster. En rekke gruver er i drift, med ulike produktkvaliteter og anvendelser. Ut fra de geologiske forutsetningene er potensialet for videre utvikling betydelig.

Dette prosjektet tar for seg utvalgte karbonatbergarter ved Evenes (Evenesmarka) og i Saltdal (Nestbylia) som har gunstige mineralkjemiske egenskaper, og potensielt kan få framtidig industriell interesse for anvendelser hvor hvithet er et kvalitetskriterium.

Det ble i Evenesmarka kjerneboret fem borehull langs veier i området, mens prøvetakingen i Nestbylia var som borkaks overflateprøvetaking i terrenget. I begge områdene ble det i tillegg utført feltanalyser direkte på fjell med bærbart XRF-analyseinstrument.

Analyser bekrefter at begge områdene inneholder store mengder av karbonatbergart med lavt innhold av karbonatbundet (krystallbundet) jern og mangan, som er en forutsetning for industrielle anvendelser som stiller krav til høy hvithet.

Magnesiuminnholdet er gjennomgående høyt (3-8 % MgO, lokalt høyere), først og fremst i Evenesmarka.

Et karakteristisk trekk for begge forekomstene er kompleks mineralogi med mange inneslutninger av andre mineraler i karbonat, inkludert finfordelt grafitt.

Evenesmarka er i varierende grad bebygd, og berører i de sydlige deler militært område øst for Evenes flyplass. Arealkonflikten mht. eventuell framtidig gruvedrift er derfor potensielt stor. I Nestbylia er det ingen bebyggelse og arealproblematikken vil kunne være enklere å håndtere.

magnesiuminimuolu el lavere entrior Evenesmarka, sami al areaisiluasjonen el relativi gunstig.							
Emneord:	Industrimineral	Råstoffkarakterisering					
Kalsiumkarbonat	Kalkspatmarmor	Bergartskjemi					
Analyser	Mineralressurser	Karbonat					

Nestbylia ansees å være mer egnet for videre utvikling i dagens situasjon, hovedsakelig fordi magnesiuminnhold er lavere enn for Evenesmarka, samt at arealsituasjonen er relativt gunstig.

INNHOLD

1. Summary in English	7
2. Bakgrunn og formål	
3. Analysemetoder	
4. Evenesmarka forekomstområde	
4.1 Tidligere undersøkelser	
4.2 Planlegging og utførelse av nye undersøkelser	
4.3 Resultater	
5. Nestbylia forekomstområde	
5.1 Tidligere undersøkelser	
5.2 Planlegging og utførelse av nye undersøkelser	
5.3 Resultater	
6. Evenesmarka-Nestbylia sammenligning	
7. Diskusjon	
8. Konklusjon	
9. Referanser	

<u>Figurer</u>

Fig. 1: Oversiktskart, kalkspat- og dolomittforekomster i Norge	. 8
Fig. 2: Illustrasjon av «konvensjonell» og «ukonvensjonell» kalkspatmarmor	10
Fig. 3: Illustrasjon av formålet med ICP-AES analyse.	12
Fig. 4: XY-plott av sammenhengen mellom totalinnhold og karbonatbundet Fe+Mn	12
Fig. 5: Kart over utbredelsen av karbonatbergarter på nord- og sydsiden av Ofotfjorden	13
Fig. 6: Geologisk kart over Evenesområdet	14
Fig. 7: Fotografi av grå, båndet kalkspatmarmor i Liakollveien, Evenesmarka	15
Fig. 8: Kartplott av karbonatbundet Fe+Mn, Evenesområdet	17
Fig. 9: Kartplott av estimert karbonatbundet Fe+Mn basert på XRF feltinstrument	23
Fig. 10: Foto av båndet karbonatbergart, Evenesmarka	24
Fig. 11: Foto av relativt homogen karbonatbergart, Evenesmarka	24
Fig. 12: Foto av erodert overflate av båndet karbonatbergart, Evenesmarka	25
Fig. 13: Borehull Kvitfors Bh 1, Evenesmarka	25
Fig. 14: Borehull Kvitfors Bh 2, Evenesmarka	26
Fig. 15: 3 borehull i Liakollveien, Evenesmarka.	27
Fig. 16: Sammenligning av karbonatbundet Fe+Mn i de fem borekjernene i Evenesmarka2	28
Fig. 17: Opptreden av karbonatbergarter i Salten.	29

Fig. 18: Forenklet geologisk kart, Rognanområdet	30
Fig. 19: Foto, Nestbylia sett mot syd.	31
Fig. 20: Foto av båndet kalkspatmarmor. Nestbylia.	32
Fig. 21: Feltbilder, Nestbylia.	33
Fig. 22: Kartplott, karbonatbundet Fe+Mn i borkaksprøver, Nestbylia	35
Fig. 23: Kartplott av estimert karbonatbundet Fe+Mn basert på XRF feltanalyser	36
Fig. 24: Karbonatbundet CaO - MgO X-Y diagram, Evenesmarka jfr. Nestby	37
Fig. 25: Histogram, karbonatbundet Fe+Mn i borkaksprøver, Nestbylia og Evenesmarka	38
Fig. 26: SEM bse-bilder, Kvitfors Bh2, Evenesmarka	39
Fig. 27: SEM bse-bilder, Nestbylia.	40

Tabeller

Tabell 1: Tidligere analyser av marmor, Evenesområdet	16
Tabell 2: Forenklet analysetabell for borekjerne Kvitfors Bh1	19
Tabell 3: Forenklet analysetabell for borekjerne Kvitfors Bh2	19
Tabell 4: Forenklet analysetabell for borekjerne Liakollveien Bh1	20
Tabell 5: Forenklet analysetabell for borekjerne Liakollveien Bh2.	21
Tabell 6: Forenklet analysetabell for borekjerne Liakollveien Bh3	21
Tabell 7: Analyser av utvalgte prøver fra Evenesmarka, flere analysemetoder	22
Tabell 8: Analysetabell for knakkprøver innsamlet i 2016, Nestbylia	31
Tabell 9: Utvalgte prøver fra Nestbylia, flere analysemetoder.	34

Vedlegg

Vedlegg	1:	Bh1	Kvitfors,	Evenesmar	ka
---------	----	-----	-----------	-----------	----

- Vedlegg 2: Bh2 Kvitfors, Evenesmarka
- Vedlegg 3: Bh1 Liakollveien, Evenesmarka
- Vedlegg 4: Bh2 Liakollveien, Evenesmarka
- Vedlegg 5: Bh3 Liakollveien, Evenesmarka
- Vedlegg 6: ICP-analyser av borkaks, Nestbylia

1. SUMMARY IN ENGLISH

Calcite marble and dolomite, in various variations, are among the main rock-types in Nordland county. Six mines are in production; two of these are calcite marble mines, four are dolomite mines. The potential for new industrial developments based on carbonate rocks are considerable.

In this project two large calcite marble deposits are considered: Evenesmarka in Evenes municipality in the northern part of the county (Ofoten), and Nestbylia in Saltdal municipality in the central part of the county (Salten).

The Evenesmarka deposit area stretches from the Ofotfjord in the south, 8-9 km northwards towards Kvitfors, in N/S-trending carbonate rocks. Nestbylia is situated SW of Rognan, also in N/S-trending carbonate rocks, 4-7 km from the sea. Both deposits are potentially very large.

The purpose of this project has been to provide documentation of the mineral and chemical characteristics of these two deposits, compare them, and suggest continued follow-up investigations if required.

The main sampling at Evenesmarka were five 25-50m long drill-cores, drilled from a truckbased drill rig, while percussion drill-dust surface sampling was the main sampling method at Nestbylia. In both areas this sampling was supplemented by field analyses by a portable XRFinstrument, analysed directly on rock exposures.

In both cases the contents of carbonate-bound (crystal bound) iron and manganese is low $(50-250 \text{ ppm Fe+Mn})^1$, indicating that these deposits could become of economic interest for applications where high-whiteness is a quality criterion.

For both deposits the mineralogy is complex, with considerable amounts of other minerals such as graphite, quartz and muscovite, as inclusions in the carbonate crystals.

The magnesium content is high (2-8 % MgO, locally higher), due to intergrowths of calcite and dolomite; this is a distinct characteristic particularly at Evenesmarka. High magnesium content in calcite marble is regarded as a disadvantage.

Evenesmarka is a relatively populated area, and touches in the southern parts military installations near Evenes airport. The potential areal conflict in case of mining is therefore considerable. Nestbylia is not populated, and the potential areal conflict is probably less.

It is concluded that Nestbylia may be more suitable for industrial development. Further investigations are recommended.

¹ Carbonate-bound Fe and Mn is an indication of high whiteness, the lower the better. In general, less than 250 ppm Fe+Mn (ICP-AES analyses based on cold dissolution in 0.1N HCl) is regarded to be good.

2. BAKGRUNN OG FORMÅL

Fig. 1: Oversiktskart, kalkspat- og dolomittforekomster i Norge.

Forekomstoversikten er basert på NGUs mineralressursdatabase. De viktigste forekomstene er navngitt, dvs. alle karbonatforekomster som er i drift pr. 30.01.2019 (driftsstatus hentet fra <u>www.dirmin.no</u>) og noen viktige forekomster som ikke er i drift. Forekomstnavnet er skrevet i kursiv for forekomster som ikke er i drift. De to områdene Evenesmarka og Nestbylia som er tema for denne rapporten er særskilt framhevet. Databasen oppdateres kontinuerlig, og framtidige oversikter vil derfor kunne avvike noe fra denne.

Marmor er en generell betegnelse på en krystallinsk karbonatbergart² med tydelig kornstruktur. Når hovedmineralet er kalkspat betegnes bergarten kalkspatmarmor. Kalkspatmarmor inneholder vanligvis varierende mengder av andre mineraler. Dolomitt³, grafitt, apatitt, kvarts, muskovitt og pyritt er de mest vanlige i tillegg til kalkspat.

Karbonatbergarter i ulike varianter er en svært viktig mineralressurstype for Norge, med 18 uttakssteder i drift (Fig. 1), rettet mot ulike anvendelser⁴. Verdien av karbonat gruveproduksjon for 2017 var på 439 millioner kroner, hvorav 9 % eksport og 91% innenlands salg og videreforedling (Direktoratet for mineralforvaltning mineralstatistikk for 2018).

I Nordland er det fem karbonatgruver i drift: Hekkelstrand i Ballangen, Kjøpsvik i Tysfjord, Hammerfall i Sørfold, Seljeli i Vefsn og Akselberg i Brønnøy. Dagens verdiskaping er betydelig, spesielt hvis en inkluderer den videreforedlingen som skjer i Kjøpsvik (sement) og i Mo i Rana (brent dolomitt). Det kjente karbonatressursgrunnlaget i fylket er svært stort, med muligheter for økt framtidig verdiskaping.

Karbonatbergarter har veldig mange bruksområder med ulike kvalitetsspesifikasjoner, se for eksempel Harben (2002) og Øvereng (2000).

I flere av NGUs tidligere undersøkelser⁵ av kalkspatmarmor har en fokusert på å identifisere forekomster av interesse for anvendelser hvor høy hvithet er et kvalitetskriterium⁶. I denne sammenheng ønskes lavt innhold av karbonatbundet jern (Fe) og mangan (Mn)⁷ fordi disse elementene reduserer hvitheten. I tillegg ønskes rene mineralkorn med få inneslutninger av andre mineraler fordi det da vil bli prosessteknisk enklere å produsere rene mineralkonsentrater av potensiell høy verdi⁸.

Noe overraskende har det vist seg at visse grå og tilsynelatende uinteressante karbonatbergarter inneholder kalkspat med til dels svært lavt innhold av karbonatbundet jern og mangan. Slike bergarter kan derfor ha interesse for framtidig industriell utvikling med henblikk på anvendelser hvor høy hvithet er en kvalitetsparameter. En ulempe er imidlertid at denne type forekomster ofte har kompleks mineralogi og med mange inneslutninger av uønskede mineraler i kalkspaten. Denne type forekomster anses i dagens marked og med dagens metoder for mineralprosessering som vanskelig prosesserbar⁹. Det kan derfor bli nødvendig å utvikle skreddersydde prosesseringsløsninger.

² Karbonatbergarter er bergarter som i hovedsak består av karbonatmineraler, vanligvis kalkspat (CaCO₃) og/eller dolomitt CaMg(CO₃)₂ og mindre mengder av andre mineraler.

³ Karbonatmineralet dolomitt opptrer i varierende mengder i kalkspatmarmor; i tilfeller hvor dolomitt dominerer i forhold til kalkspat kalles bergarten dolomittmarmor eller bare dolomitt.

⁴ I noen tilfeller benyttes bergarten slik den er uten annen bearbeiding enn knusing og maling; dette gjelder for eksempel karbonatbergart som benyttes som råvare i sementproduksjon. I andre tilfeller ønskes et rent mineralkonsentrat av kalkspat for anvendelse for eksempel i maling og papir; bergarten må i så fall gjennomgå

en kompleks industriell prosess (mineralprosessering) med det formål å lage et rent mineralkonsentrat.

⁵ Se for eksempel rapporter av Øvereng fra en del år tilbake, nevnt i referanselisten (Kap. 9). Se også Korneliussen m. fl. (2014) som gir en landsomfattende oversikt og Korneliussen m.fl. (2011) som tar for seg forekomster i Evenesområdet. Se også andre referanser som disse rapportene henviser til.

⁶ For anvendelse for eksempel i papir, maling og plast er høy hvithet en avgjørende faktor.

⁷ Jo lavere innhold av jern og mangan, jo bedre. Under 250 ppm (parts pr million, tilsvarende gram per tonn) Fe+Mn (karbonatbundet) ansees som bra.

⁸ Mineralkonsentrater av ren kalkspat med høy hvithet kan ha markedsverdi i størrelsesorden 1000 – 3000 kr/t avhengig av kvaliteten, mens råvaren (karbonatbergarten) normalt har verdi i størrelsesorden 100 kr/t.

⁹ Med prosesserbar menes at det lar seg gjøre å lage markedsattraktive karbonatprodukter til konkurransedyktig pris. I mange tilfeller innebærer dette at andre mineraler i bergarten fjernes slik at man sitter igjen med et rent kalkspat- eller dolomitt-konsentrat

Fordi det mest sannsynlig kreves en videre teknologisk utvikling innen mineralprosessering, har en valgt å betegne slike forekomster som «ukonvensjonelle», jfr. Fig. 2.

Dette prosjektet tar for seg to nye slike («ukonvensjonelle») forekomstområder, henholdsvis Evenesmarka øst og nordøst for Evenes flyplass og Nestbylia sørvest for Rognan i Saltdal. I begge områdene består berggrunnen av bergarten kalkspatmarmor med lavt innhold av krystallbundet jern og mangan samtidig som forekomstene er svært store.

Formålet med dette prosjektet er å gi en dokumentasjon av de to forekomstenes geologiske karakteristika med særlig henblikk på kjemiske og mineralogiske særtrekk, og eventuelt skissere hva som bør gjøres av videre undersøkelser.

Fig. 2: Illustrasjon av «konvensjonell» og «ukonvensjonell» kalkspatmarmor.

Begge karbonatbergartene vist i Fig. 2 har lavt innhold av karbonatbundet jern og mangan. I det første eksemplet ansees det relativt enkelt å lage et rent, høyverdig kalkspatprodukt med konvensjonell mekanisk-kjemisk mineralprosessering fordi karbonatkornene praktisk talt ikke inneholder inneslutninger av andre mineraler, mens det tilsvarende ikke lar seg gjøre i det andre tilfellet på grunn av store mengder ørsmå inneslutningene av andre mineraler i kalkspat.

3. ANALYSEMETODER

Prøver av karbonatbergarter analyseres rutinemessig ved NGU for hoved- og sporelementer med XRF¹⁰, ICP-AES¹¹, svovel (TS) og organisk karbon (TOC, grafitt)¹² og syreuløst rest. I tillegg mikroskoperes bergarten i optisk mikroskop og i skanning elektronmikroskop (SEM) rutinemessig. Det innskutte bildet i Fig. 3 er et eksempel på SEM bse-bilde¹³; se for øvrig flere eksempler i Kap. 6.

XRF-analysen gir bergartens totale kjemiske sammensetning, mens ICP-analysen gir karbonatmineralets sammensetning, se illustrasjon i Fig. 3.

Ved ICP-AES-analysen løses bergarten i svak saltsyre (kald 0,1 N HCl) slik at kun karbonat oppløses; oppløsningen analyseres deretter og en får analysetall for karbonatets kjemiske sammensetning. De andre mineralene som ikke oppløses (uløselig rest) er kvarts, muskovitt, pyritt, grafitt, m.fl. ICP-AES-analysen gir følgelig analysetall for gjennomsnittsinnholdet i prøven av karbonatbundet (krystallbundet) Ca, Mg, Fe, Mn, P, Sr, m.fl.

Fe- og Mn-verdiene fra ICP-AES-analysen er avgjørende for vurderingen av karbonatmineralenes potensielle hvithet, jo lavere jo bedre; se mer detaljert omtale av Korneliussen m.fl. (2014).

I tillegg er det gjort målinger i felt med bærbar XRF (Thermo Scientific Niton XL3t) direkte på fjell. Denne type analyser er raske å gjennomføre, men gir kun totalverdier. Innholdet av karbonatbundet Fe+Mn er beregnet ved at det er benyttet en korreksjonsfaktor på 0,18¹⁴ bestemt som gjennomsnittlig forhåndstall mellom ICP-AES analyseverdier og XRFanalyseverdier for det samme borkaks prøvematerialet (se nedenfor).

Fig. 4 viser relasjonen mellom Fe+Mn totalverdier (Niton XRF-analyse) og karbonatbundet (ICP-AES-analyse) for det samme borkaks prøvematerialet fra Nestbylia (Kap. 5). Selv om korrelasjonen er dårlig så gir Niton-analysene likevel en god indikasjon på nivået for karbonatbundet Fe+Mn. For eksempel vil en Niton-analyse på 1000 ppm Fe+Mn og lavere indikere at innholdet av karbonatbundet Fe+Mn mest sannsynlig er 200 ppm eller lavere, noe som er verdifull informasjon.

¹⁰ XRF (X-ray fluorescence, eller røntgenfluorescence på norsk). Denne analysemetoden gir bergartens totalsammensetning i form av innhold av hovedelementer som SiO₂, Al₂O₃, CaO, etc., og sporelementer som Sr, Ce, Zn, etc.

¹¹ ICP-AES (Inductively coupled plasma atomic emission spectroscopy).

¹² Forbrenningsanalyse med instrument av type LECO SC-632.

¹³ Bse er forkortelse for Backscattered electron image.

¹⁴ Korrelasjonsfaktor 0,18; medianverdien 0,15.

Fig. 4: XY-plott av sammenhengen mellom totalinnhold og karbonatbundet Fe+Mn.

4. EVENESMARKA FOREKOMSTOMRÅDE

4.1 Tidligere undersøkelser

Karbonat i ulike varianter er vanlig i Ofoten, slik det framgår av oversiktskartet i Fig. 5. Spesielt er Evenesområdet (Fig. 6) relativt detaljert geologisk kartlagt og beskrevet (Zwaan m. fl. 2002, Melezhik m. fl. 1997, 2003) og karbonatene i området har vært gjenstand for økonomisk-geologiske undersøkelser i flere omganger, jfr. flere rapporter av Øvereng m.fl. og Korneliussen m. fl. (2011).

Tidligere undersøkelser av NGU av karbonat som mineralressurs har i hovedsak vært rettet mot hvit kalkspatmarmor av interesse i markedet på den tiden undersøkelsene ble utført.

En betydelig andel av berggrunnen i området består av karbonatbergarter (marmorer, krystallinsk kalkstein) i ulike varianter og aldre, med avsetningsaldre fra sen-proterozoisk¹⁵ til

avsetningsaldre fra sen-proterozoisk ¹⁶ ti silurisk¹⁶, som er angitt i ulike farger i det geologiske kartet i Fig. 6. Spesielt enhetene 18^{17} og 19^{18} inneholder kalkspatmarmor med lavt innhold av karbonatbundet jern og mangan.

Fig. 5: Kart over utbredelsen av ulike karbonatbergarter (blå farge) på nord- og sydsiden av Ofotfjorden, basert på NGUs 1:250.000 geologiske kartserie (Gustavson, 1974: 1:250 000 Narvik). Det undersøkte området, Evenesmarka, er merket i gult.

Evenesområdet inneholder store mengder av en grå og tilsynelatende uinteressant marmor. Denne bergarten har tidligere ikke vært viet særlig oppmerksomhet fordi en ikke var tilstrekkelig klar over at den faktisk inneholder karbonat med svært lavt innhold av karbonatbundet jern og mangan av potensiell høy hvithet. Dette ble først bekreftet ved oppfølgende prøvetaking i 2016, og detaljert fulgt opp i Evenesmarka i 2017.

Det prioriterte området følger i begrenset grad den geologiske inndelingen (Fig. 6). Dette skyldes både at geologien er mer kompleks enn tidligere antatt, og at den geologiske kartleggingen har vært mindre detaljert, spesielt i de nordlige delene av området hvor det er mye overdekning av løsmasser (jord og myr). I tillegg kan bergartsegenskapene variere innen samme geologiske enhet.

Bergartene i forekomstområdet stuper 40-60° mot øst i de sydlige deler, men faller mer slakt (10-30°) mot øst i de sentrale og nordlige deler.

¹⁵ 650-800 millioner år i dette tilfellet.

¹⁶ Ca. 440 millioner år i dette tilfellet.

¹⁷ Silurisk kalkspatmarmor av varierende utseende og karakteristika, inkludert hvite, grovkornede varianter.

¹⁸ Kambrisk, hvit grovkornet kalkspatmarmor.

Fig. 6: Geologisk kart over Evenesområdet basert på Zwaan m. fl. (2002) og Melezhik m. fl. (2003).

Fig. 7: Fotografi av grå, båndet kalkspatmarmor i Liakollveien, Evenesmarka. UTM-koordinater (sone 33): Øst 571077, Nord 7597724 Tabell 1: Analysetabell, tidligere analyser (ICP-AES) av marmor i Evenesområdet

Analyseverdier av prøver av marmor innsamlet i 2016 og tidligere i det sentrale Evenesområdet. De respektive prøvelokalitetene er plottet i Fig. 8. De fleste av prøvene har lavt innhold av karbonatbundet jern og mangan, hvorav 11 prøver inneholder mindre enn 100 ppm Fe+Mn.

							_	В	eregnet		
	Koord	. (UTM33)	Ca	Mg	Fe	Mn	Fe+Mn	CaO	MgO	Kalksp.	Dolom.
Prøve	Øst	Nord	ppm	ppm	ppm	ppm	ppm	%	%	%	%
K15.09	567593	7600040	374000	12300	93	26	119	52,32	2,04	87,95	9,35
K16.09	567625	7600119	371000	8110	75	23	98	51,90	1,34	88,93	6,16
K17.09	570474	7594653	371000	8110	75	23	98	51,90	1,34	88,93	6,16
K18.09	570488	7594625	264000	81200	164	38	202	36,93	13,46	32,22	61,70
K42.15	570485	7594619	349000	17400	76	17	94	48,83	2,88	79,64	13,22
K43.15	570485	7594619	335000	6010	1640	57	1697	46,87	1,00	80,84	4,57
K101.10	570543	7594664	332000	18500	115	21	136	46,45	3,07	74,95	14,06
K102.10	570531	7594660	332000	18500	115	21	136	46,45	3,07	74,95	14,06
K103.10	570500	7594634	328000	26100	150	22	172	45,89	4,33	70,83	19,83
K104.10	570713	7594793	336000	22000	51	17	68	47,01	3,65	74,51	16,72
K221.16	573029	7603954	281000	38300	2540	110	2650	39,31	6,35	54,12	29,10
K222.16	573015	7603932	273000	39000	3490	107	3597	38,19	6,47	51,84	29,63
K224.16	572529	7603666	284000	61600	271	50	321	39,73	10,21	45,27	46,81
K225.16	572541	7603643	340000	21600	91	27	117	47,57	3,58	75,67	16,41
K238.16	571753	7598782	328000	34900	579	105	684	45,89	5,79	67,21	26,52
K239.16	571143	7598808	361000	10600	396	32	428	50,50	1,76	85,42	8,05
K240.16	570699	7598769	335000	19600	50	16	66	46,87	3,25	75,25	14,89
K241.16	570553	7598767	338000	20100	554	32	586	47,29	3,33	75,79	15,27
K242.16	570970	7598832	349000	22600	63	23	85	48,83	3,75	77,49	17,17
K243.16	566976	7602174	338000	20800	113	13	126	47,29	3,45	75,50	15,80
K244.16	566708	7602538	306000	40200	334	35	369	42,81	6,67	59,55	30,55
K245.16	567135	7603459	328000	30800	98	14	113	45,89	5,11	68,90	23,40
K246.16	567043	7603538	352000	11200	82	13	95	49,24	1,86	82,94	8,51
K247.16	567450	7596780	355000	14800	126	16	142	49,66	2,45	82,20	11,25
K248.16	567360	7597165	355000	12500	229	28	257	49,66	2,07	83,15	9,50
K249.16	567526	7599746	330000	24900	308	35	343	46,17	4,13	71,82	18,92
K250.16	571000	7597932	316000	21000	57	<10	57	44,21	3,48	69,95	15,96
K251.16	571070	7597725	335000	22900	54	12	66	46,87	3,80	73,89	17,40
K253.16	571495	7597774	253000	73400	382	26	408	35,39	12,17	32,70	55,77
K254.16	571395	7597700	294000	20700	75	14	89	41,13	3,43	64,60	15,73
K255.16	571161	7597709	359000	9600	27	15	42	50,22	1,59	85,34	7,29
K256.16	570971	7594953	346000	12200	1120	35	1155	48,41	2,02	81,03	9,27
K257.16	570840	7594834	370000	6240	420	26	446	51,76	1,03	89,45	4,74
K258.16	572165	7602551	322000	34000	43	14	57	45,05	5,64	66,09	25,84
LE4-00-05m	567604	7600045	341000	17600	115	34	149	47,71	2,92	77,56	13,37
LE4-05-10m	567604	7600045	295000	31500	221	50	271	41,27	5,22	60,40	23,94
LE4-10-15m	567604	7600045	266000	40700	290	43	333	37,21	6,75	49,40	30,93
LE4-15-20m	567604	7600045	265000	41200	202	61	263	37,07	6,83	48,94	31,31
LE4-20-25m	567604	7600045	308000	30000	307	52	359	43,09	4,97	64,25	22,80
Gjennomsnitt			326026	25712	390	34	423	45,61	4,26	70,50	19,54
Median			335000	21000	126	26	149	46,87	3,48	74,95	15,96

Fig. 8: Kartplott av karbonatbundet Fe+Mn basert på knakkprøver (Tabell 1) fra 2016 og tidligere. Kjerneborehull boret i 2017 er avmerket. Forenklet geologisk bakgrunnskart for noen utvalgte karbonatenheter er vist over topografisk bakgrunn med svak gjennomskinnelig farge; se tallkode i Fig. 6.

4.2 Planlegging og utførelse av nye undersøkelser

Basert på tidligere geologiske undersøkelser ble det mest interessante området avgrenset til å strekke seg fra Evenestangen og Rørvika ved Ofotfjorden i sør opp til E10 i nord og videre nordover mot Kvitfors. Alle berørte grunneiere ble informert på forhånd i brevs form om hvilke aktiviteter som var planlagt, og det ble oppfordret til å kontakte NGU dersom man hadde spørsmål. Etter initiativ fra grunneiere ble det gjennomført et informasjonsmøte i Evenesmarka grendehus 17. august 2017 (omtalt i Harstad Tidende dagen etter).

Eksakte lokasjoner for senere kjerneboring og lengde på hull ble bestemt i felt, og boret etter avtaler med de involverte grunneierne.

4.3 Resultater

Resultatene av undersøkelsene framgår av påfølgende analysetabeller og kartframstillinger, og blir nærmere diskutert i Kap. 7.

De fem borekjernene er beskrevet i Vedlegg 1, 2, 3, 4 og 5.

En stor andel av prøvene har lavt innhold av karbonatbundet jern og mangan, som er gunstig for eventuell industriell produksjon av mineralkonsentrater av høy hvithet.

Magnesiuminnholdet i prøvetatt marmor er stort sett i størrelsesorden 2-8 % MgO (dolomittholdig kalkspatmarmor), med enkeltverdier opp mot 16-18 % MgO (dolomitt). Det høye magnesiuminnholdet ansees som uheldig i denne type forekomst, som i dette tilfellet er en blandingsbergart av kalkspat og dolomitt, fordi det gjør det vanskeligere å produsere rene mineralkonsentrater av enten kalkspat eller dolomitt.

Det ble i feltundersøkelsene benyttet et bærbart XRF analyseinstrument for analyser direkte på fjell. Analyseverdiene er totalverdier. Karbonatbundet jern og mangan er beregnet som totalverdiene multiplisert med en korreksjonsfaktor 0,18, noe som gir en indikasjon på innholdet av karbonatbundet Fe+Mn. Se mer detaljert forklaring av analysemetode og metodikk i Kap. 3.

Disse verdiene er deretter plottet som vist på kartet i Fig. 9. Dette kartet viser at en stor andel av berggrunnen i det aktuelle området inneholder karbonat med lavt innhold av karbonatbundet jern og mangan.

Laboratorieanalyser av de fem borekjernene (Tabell 2, 3, 4, 5 og 6) bekrefter dette inntrykket.

Fotografier av feltblotninger er vist i Fig. 10, Fig. 11 og Fig. 12.

	Prøveintervall (m)			%	%	ppm	
Prøvenr	Fra	Til	Lengde	CaO	MgO	Fe+Mn	Bergart
K1/0.0-2.0	-	2,00	2,00	43,51	5,31	226	Mg-rik kalkspatmarmor
K1/2.0-4.0	2,00	4,00	2,00	44,49	5,24	195	Mg-rik kalkspatmarmor
K1/4.0-6.0	4,00	6,00	2,00	43,65	4,46	158	Mg-rik kalkspatmarmor
K1/6.0-8.0	6,00	8,00	2,00	44,63	6,15	137	Mg-rik kalkspatmarmor
K1/8.0-10.0	8,00	10,00	2,00	43,93	6,02	139	Mg-rik kalkspatmarmor
K1/10.0-12.4	10,00	12,40	2,40	39,59	7,26	217	Mg-rik kalkspatmarmor
Ikke analysert	12,40	13,65	1,25				Marmor med kvsrtslinser
K1/13.65-15.0	13,65	15,00	1,35	42,39	7,33	296	Mg-rik kalkspatmarmor
K1/15.0-17,45	15,00	17,46	2,46	45,89	4,86	80	Mg-rik kalkspatmarmor
K1/17,45-17,85	17,45	17,85	0,40	28,12	16,05	312	Dolomitt
K1/17,85-20.0	17,85	20,00	2,15	43,23	6,57	193	Mg-rik kalkspatmarmor
K1/20.0-22,0	20,00	22,00	2,00	43,93	5,52	230	Mg-rik kalkspatmarmor
K1/22,0-23,55	22,00	23,85	1,85	43,93	6,17	206	Mg-rik kalkspatmarmor
K1/23.85-27,0	23,85	27,00	3,15	43,37	5,92	226	Mg-rik kalkspatmarmor
K1/27.0-30.0	27,00	31,70	4,70	26,58	15,82	691	Dolomitt
K1/31.7-34.0	31,70	34,00	2,30	45,33	4,79	389	Mg-rik kalkspatmarmor
K1/34.0-36.4	34,00	37,30	3,30	44,63	5,34	428	Mg-rik kalkspatmarmor
K1/37.3-40,0	37,30	40,00	2,70	39,59	6,33	143	Mg-rik kalkspatmarmor
K1/40.0-42.0	40,00	42,00	2,00	40,57	7,73	358	Mg-rik kalkspatmarmor
K1/42.0-44.0	42,00	44,00	2,00	45,33	4,78	128	Mg-rik kalkspatmarmor
K1/44.0-46.0	44,00	46,00	2,00	40,57	6,05	181	Mg-rik kalkspatmarmor
K1/46.0-48.0	46,00	48,00	2,00	36,51	6,07	196	Mg-rik kalkspatmarmor
K1/48.0-50.0	48,00	50,00	2,00	40,15	5,72	395	Mg-rik kalkspatmarmor
Gjennomsnitt:				41,36	6,79	251	

Tabell 2: Forenklet analysetabell for borekjerne Kvitfors Bh1. ICP-AES analyse. Se vedlegg 1 for mer detaljert informasjon.

Tabell 3: Forenklet analysetabell for borekjerne Kvitfors Bh2. ICP-AES analyse. Se vedlegg 2 for mer detaljert informasjon.

_	Prøveintervall (m)			%	%	ppm	
Prøvenr	Fra	Til	Lengde	CaO	MgO	Fe+Mn	Bergart
K2/0.0-2.9	-	2,90	2,90	45,47	4,53	53	Mg-rik kalkspatmarmor
K2/2.9-4.2	2,90	4,20	1,30	44,07	6,05	87	Mg-rik kalkspatmarmor
K2/4.2-6.0	4,20	6,00	1,80	49,38	2,07	29	Mg-rik kalkspatmarmor
K2/6.0-7.4	6,00	7,40	1,40	46,31	5,11	44	Mg-rik kalkspatmarmor
K2/7.4-7.9	7,40	7,90	0,50	38,47	8,79	119	Mg-rik kalkspatmarmor
K2/7.9-10.0	7,90	10,00	2,10	49,52	2,47	31	Mg-rik kalkspatmarmor
K2/10.0-12.4	10,00	12,40	2,40	47,57	3,66	40	Mg-rik kalkspatmarmor
K2/12.4-14.55	12,40	14,55	2,15	48,13	3,61	37	Mg-rik kalkspatmarmor
K2/14.55-16.1	14,55	16,10	1,55	40,99	8,09	91	Mg-rik kalkspatmarmor
K2/16.1-18.8	16,10	18,80	2,70	48,55	2,65	39	Mg-rik kalkspatmarmor
K2/18.8-21.0	18,80	21,00	2,20	45,61	5,62	55	Mg-rik kalkspatmarmor
K2/21.0-23.0	21,00	23,00	2,00	45,33	4,54	42	Mg-rik kalkspatmarmor
K2/23.0-25.1	23,00	25,10	2,10	47,99	2,69	34	Mg-rik kalkspatmarmor
Gjennomsnitt:				45,95	4,61	54	

	Prøveintervall (m)			%	%	ppm	
Prøvenr	Fra	Til	Lengde	CaO	MgO	Fe+Mn	Bergart
L1/0.0-3.2	-	3,20	3,20	47,01	2,55	130	Mg-rik kalkspatmarmor
L1/3.2-4.5	3,20	4,50	1,30	33,02	7,97	553	Mg-rik kalkspatmarmor
L1/4.5-6.5	4,50	6,50	2,00	39,31	5,27	323	Mg-rik kalkspatmarmor
L1/6.5-7.2	6,50	7,20	0,70	31,06	8,72	473	Mg-rik kalkspatmarmor
L1/7.2-8.5	7,20	8,50	1,30	36,09	8,69	312	Mg-rik kalkspatmarmor
L1/8.5-11.0	8,50	11,00	2,50	45,05	4,61	197	Mg-rik kalkspatmarmor
L1/11.0-13.0	11,00	13,00	2,00	39,73	6,07	982	Mg-rik kalkspatmarmor
L1/13.0-15.0	13,00	15,00	2,00	42,81	5,17	171	Mg-rik kalkspatmarmor
L1/15.0-17.0	15,00	17,00	2,00	41,97	7,26	306	Mg-rik kalkspatmarmor
L1/17.0-19.0	17,00	19,00	2,00	44,77	5,80	123	Mg-rik kalkspatmarmor
L1/19.0-22.2	19,00	22,20	3,20	41,27	5,85	928	Mg-rik kalkspatmarmor
Ikke analysert	22,20	24,10	1,90				Sulfidrik kalksilikatbergart
L1/24.1-26.2	24,10	26,20	2,10	40,15	8,21	244	Mg-rik kalkspatmarmor
Ikke analysert	26,20	26,50	0,30				Sulfidrik kalksilikatbergart
L1/26.5-29.0	26,50	29,00	2,50	44,77	4,59	265	Mg-rik kalkspatmarmor
L1/29.0-31.0	29,00	31,00	2,00	39,45	6,50	172	Mg-rik kalkspatmarmor
L1/31.0-33.0	31,00	33,00	2,00	45,33	4,87	166	Mg-rik kalkspatmarmor
L1/33.0-35.0	33,00	35,00	2,00	45,47	4,66	85	Mg-rik kalkspatmarmor
L1/35.0-37.0	35,00	37,00	2,00	47,99	3,63	51	Mg-rik kalkspatmarmor
L1/37.0-40.0	37,00	40,00	3,00	46,31	4,58	69	Mg-rik kalkspatmarmor
Gjennomsnitt:				41,75	5,83	308	

Tabell 4: Forenklet analysetabell for borekjerne Liakollveien Bh1. ICP-AES analyse. Se vedlegg 3 for mer detaljert informasjon.

	Prøveintervall (m)			%	%	ppm	
Prøvenr	Fra	Til	Lengde	CaO	MgO	Fe+Mn	Bergart
L2/0-2.5	-	2,50	2,50	49,66	2,77	56	Mg-rik kalkspatmarmor
L2/2.5-5.8	2,50	5 <i>,</i> 80	3,30	48,83	3,61	53	Mg-rik kalkspatmarmor
L2/5.8-6.1	5,80	6,10	0,30	29,66	16,10	309	Dolomitt
L2/6.1-7.9	6,10	7,90	1,80	40,99	6,93	109	Mg-rik kalkspatmarmor
L2/7.9-8.9	7,90	8,90	1,00	47,85	4,46	64	Mg-rik kalkspatmarmor
L2/8.9-9.3	8,90	9,30	0,40	38,75	11,71	123	Dolomitt
L2/9.3-12.15	9,30	12,15	2,85	40,57	5,65	321	Mg-rik kalkspatmarmor
L2/12.15-14.5	12,15	14,50	2,35	43,51	5,47	76	Mg-rik kalkspatmarmor
L2/14.5-17.35	14,50	17,35	2,85	37,49	9,78	227	Mg-rik kalkspatmarmor
Ikke analysert	17,35	17,55	0,20				Silikatrik, urein marmor
L2/17.55-20.7	17,55	20,70	3,15	32,18	14,47	825	Dolomitt
Ikke analysert	20,70	45,85	25,15				Vekslende glimmerskifer og rosabåndet marmor
L2/45.85-48.0	45,85	48,00	2,15	37,91	10,64	545	Mg-rik kalkspatmarmor
L2/48.0-50.0	48,00	50,00	2,00	44,21	5,85	94	Mg-rik kalkspatmarmor
Gjennomsnitt:				40,97	8,12	234	

Tabell 5: Forenklet analysetabell for borekjerne Liakollveien Bh2. ICP-AES analyse. Se vedlegg 4 for mer detaljert informasjon.

Tabell 6: Forenklet analysetabell for borekjerne Liakollveien Bh3. ICP-AES analyse. Se vedlegg 5 for mer detaljert informasjon.

	Prøv	veinterval	l (m)	%	%	ppm	
Prøvenr	Fra	Til	Lengde	CaO	MgO	Fe+Mn	Bergart
L3/0.0-2.5	-	2,50	2,50	48,69	2,90	66	Mg-rik kalkspatmarmor
L3/2.5-4.9	2,50	4,90	2,40	41,55	7,20	583	Mg-rik kalkspatmarmor
L3/4.9-7.0	4,90	7,00	2,10	38,33	6,83	509	Mg-rik kalkspatmarmor
L3/7.0-9.45	7,00	9,45	2,45	40,29	6,83	271	Mg-rik kalkspatmarmor
L3/9.45-12.05	9,45	12,05	2,60	36,65	5,97	381	Mg-rik kalkspatmarmor
L3/12.05-12.7	12,05	12,70	0,65	31,20	18,40	233	Dolomitt
L3/12.7-14.4	12,70	14,40	1,70	40,99	7,15	112	Mg-rik kalkspatmarmor
L3/14.4-17.7	14,40	17,70	3,30	42,67	6,50	134	Mg-rik kalkspatmarmor
L3/17.7-19.9	17,70	19,90	2,20	32,74	12,65	685	Dolomitt
L3/19.9-20.4	19,90	20,40	0,50	46,59	3,60	47	Mg-rik kalkspatmarmor
L3/20.4-23.2	20,40	23,20	2,80	34,56	12,22	156	Dolomitt
L3/23.2-25.5	23,20	25,50	2,30	42,25	7,18	130	Mg-rik kalkspatmarmor
L3/25.5-27.3	25,50	27,30	1,80	41,55	7,54	125	Mg-rik kalkspatmarmor
L3/27.3-30.4	27,30	30,40	3,10	36,79	11,36	173	Dolomitt
Gjennomsnitt:				39,63	8,31	257	

Tabell 7: Analyser av utvalgte prøver fra Evenesmarka, flere analysemetoder.

		_	Evenesmarka								
Felt prøvenr.			K1/6.0-8.0 (193504)	K2/4.2-6.0 (193525)	K2/12.4-14.55 (193530	K2/21.0-23.0 (193534)	L1/33.0-35.0 (193551)	L2/6.1-7.9 (193557)	L3/23.2-25.5 (193577	Gj.snitt	
SiO2	xrf	%	2,47	1,73	1,56	2,43	5,98	8,41	4,01	3,80	
Al2O3	xrf	%	0,19	0,03	0,04	0,10	0,29	0,31	0,13	0,15	
Fe2O3	xrf	%	0,083	0,020	0,018	0,040	0,121	0,123	0,087	0,070	
TiO2	xrf	%	0,01	< 0.01	< 0.01	< 0.01	0,02	0,01	0,01	0,01	
MgO	xrf	%	6,31	2,17	3,84	4,62	4,80	7,04	7,30	5,15	
CaO	xrf	%	46,80	52,00	50,40	48,60	46,60	42,30	44,70	47,34	
Na2O	xrf	%	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	
К2О	xrf	%	0,08	0,01	0,02	0,04	0,13	0,14	0,05	0,07	
MnO	xrf	%	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	-	
P2O5	xrf	%	0,09	0,12	0,08	0,07	0,22	0,13	0,06	0,11	
Gl.tap		%	43,30	42,90	43,20	43,10	41,20	40,60	42,80	42,44	
Sum		%	99,40	99,00	99,20	99,00	99,40	99,00	99,20	99,17	
Sr	xrf	ppm	576	1 020	904	900	854	735	382	767	
S	xrf	ppm	700	226	<200	388	976	1 010	568	645	
CaO	іср	%	44,63	49,38	48,13	45,33	45,47	40,99	42,25	45,17	
MgO	іср	%	6,15	2,07	3,61	4,54	4,66	6,93	7,18	5,02	
Fe	іср	ppm	121	24	32	37	60	88	108	67	
Mn	icp	ppm	16	5	5	5	24	21	22	14	
Fe+Mn	іср	ppm	137	29	37	42	85	109	130	81	
Р	icp	ppm	325	476	288	271	864	505	231	423	
Sr	icp	ppm	588	1 020	939	901	863	742	385	777	
S	icp	ppm	<40	<40	<40	<40	<40	<40	<40	-	
S	Leco	%	0,0213	< 0.02	< 0.02	< 0.02	0,0455	0,0632	0,0220	0,0380	
тос	Leco	%	0,133	< 0.1	< 0.1	0,112	0,111	0,132	0,131	0,124	
Uløst syrerest %		3,03	1,84	1,69	2,78	6,84	9,31	4,31	4,26		

Fig. 9: Kartplott av estimert karbonatbundet Fe+Mn basert på bærbart XRF feltinstrument. Se nærmere forklaring i Kap. 3.

Fig. 10: Foto av båndet karbonatbergart (magnesiumholdig kalkspatmarmor), Evenesmarka.

UTM-koord. (sone 33): 570940 Ø, 7597730 N

Fig. 11: Foto av relativt homogen karbonatbergart (kalkspatmarmor), Evenesmarka.

Niton bærbart XRF feltanalyseinstrument er vist til venstre i bildet.

UTM-koord. (sone 33): 570760 Ø, 7597500 N

Fig. 12: Foto av erodert overflate av båndet karbonatbergart (magnesiumholdig kalkspatmarmor), Evenesmarka.

UTM-koord. (sone 33): 571080 Ø, 7597710 N

Fig. 13: Borehull Kvitfors Bh 1 med analyser av karbonatbundet (ICP-AES) Fe+Mn plottet langs borekjernen. Lagningen i bergarten er indikert med stipling, fall mot øst.

Variasjonen i karbonatbundet Fe+Mn langs borekjernen framgår av delfiguren til høyre i Fig. 13. Ut fra en Fe+Mn-kvalitetsvurdering er de første 27 meter av borekjernen av relativt god kvalitet, men dog ikke av samme klasse som bergarten i Kvitfors Bh2 (Fig. 14). MgOinnholdet er imidlertid høyt (4-6 % MgO og høyere), jfr. Tabell 2 og Vedlegg 1.

Bergarten i dette borehullet antas å være av mindre interesse, hovedsakelig på grunn av en betydelig variasjon i Fe+Mn-innhold særlig i den nedre halvdelen.

Fig. 14: Borehull Kvitfors Bh 2 med analyser av karbonatbundet (ICP-AES) Fe+Mn plottet langs borekjernen. Lagningen i bergarten er indikert med stipling, fall mot øst

Variasjonen i karbonatbundet Fe+Mn langs borekjernen framgår av delfiguren til høyre. Ut fra en Fe+Mn-kvalitetsvurdering er hele borekjernen av enestående god kvalitet, men MgOinnholdet er høyt (gjennomsnittlig 4,6 % MgO), jfr. Tabell 3 og Vedlegg 2.

Karbonatbergarten i dette borehullet er den mest interessante som er påvist i Evenesmarka forekomstområde.

Fig. 15: 3 borehull i Liakollveien med analyser av karbonatbundet (ICP-AES) Fe+Mn plottet langs borekjernene. Lagningen i bergarten er indikert med stipling, fall mot øst.

Kartutsnittet i figuren ovenfor viser plasseringen av tre borehull langs Liakollveien i den sydlige delen av forekomstområdet. Det framgår av delfigurene til høyre at variasjonen i karbonatbundet Fe+Mn er betydelig. Magnesiuminnholdet er gjennomgående høyt, jfr. tabellene 4, 5 og 6.

Ut fra variasjonen i analysedataene med til dels høyt innhold av karbonatbundet jern og mangan, ansees dette delområdet (Liakollveien) å ha mindre interesse som karbonatressurs betraktet.

Fig. 16: Sammenligning av variasjonen i karbonatbundet Fe+Mn i de fem borekjernene i Evenesmarka.

Det framgår tydelig at Kvitfors Bh2 er i særklasse den beste med hensyn til lavt innhold av karbonatbundet Fe+Mn, men hullet ble dessverre bare boret 25 m.

5. NESTBYLIA FOREKOMSTOMRÅDE

5.1 Tidligere undersøkelser

Karbonatbergarter i ulike varianter (alle er marmorer) utgjør en betydelig andel av berggrunnen i Salten (Fig. 17). Spesielt i et område sørvest for Rognan inneholder en av de geologiske enhetene kalkspatmarmor med særskilt lavt innhold av karbonatbundet jern og mangan, og kan derfor anses som en mineralressurs som kan tenkes å kunne få økonomisk betydning i framtiden for anvendelser hvor høy hvithet er et kvalitetskriterium.

I likhet med bergartene i Evenesmarka så anses den aktuelle forekomsttypen som «ukonvensjonell»; se Kap. 2

Den geologiske oppbygningen av det aktuelle området (Fig. 18) er beskrevet i detalj av Melezhik m. fl. (2013) med særlig vekt på aldersrelasjoner. De ulike karbonat bergartsenhetene varierer i alder fra sen-prekambrisk¹⁹ til tidlig silurisk, se tegnforklaringen i Fig. 18. Den undersøkte bergartsenheten tilhører den siluriske Rognan-formasjonen (alder 440 millioner år), og er den yngste karbonatenheten i området (Melezhik m. fl., 2013).

Tidligere rekognosering og innsamling av prøver av karbonatbergarter i området har blitt gjort i veiskjæringer langs fylkesveg 812 mellom Nestbylia og Ljøsenhammer.

Analyser av prøver fra veiskjæringer i Nestbylia innsamlet i 2016 er oppgitt i Tabell 8.

Fig. 17: Opptreden av karbonatbergarter i Salten, basert på NGUs 1:250.000 geologiske kartserie.

¹⁹ Av de kartlagte bergartsenhetene er den sen-prekambriske Kjerktind-formasjonen (660-800 millioner år; se Fig. 17) eldst, mens den siluriske Rognan-formasjonen (440 millioner år) er yngst.

Fig. 18: Forenklet geologisk kart basert på Gjelle m.fl. (2013) og Melezhik m.fl. (2013).

Rognan formasjonen består i hovedsak av grå til hvit kalkspatmarmor (fokus i denne rapporten), men inneholder også soner av dolomitt og glimmerskifer. Øynes formasjonen består av karbonatholdig glimmerskifer og ulike konglomerater. Fjellengflåget formasjonen har enheter av kalkspatog dolomittisk marmor, glimmerskifer og kvartsitt. Leivset formasjonen består i hovedsak av ulike varianter av dolomitt og kalkspatmarmor, men inneholder også kalkholdig glimmerskifer og konglomerat. Kjertinden formasjonen inneholder kalkspatmarmor, glimmerskifer og kvartsitt. Se Gjelle m. fl. (2013) for detaljert kartinformasjon.

Tabell 8: Analysetabell for knakkprøver innsamlet i 2016, Nestbylia (ICP-analyser). Prøvene er fra veiskjæring langs riksvei 812 mellom Saltdal og Misvær. Alle prøver unntatt én (K202.16) har lavt innhold av karbonatbundet jern og mangan.

				Mg	Fe	Mn	Beregnet					
	Koordinate	er (UTM33)	Ca				Fe-Mn	CaO	MgO	Kalkspat	Dolomitt %	Uløst %
Prøve	Øst	Nord	%	%	ppm	ppm	ppm	%	%	%		
K201.16	513 807	7 437 085	361 000	10 400	45	13	58	50,50	1,72	85,50	7,90	0,67
K202.16	513 800	7 437 088	328 000	28 100	619	91	710	45,89	4,66	70,01	21,35	5,28
K203.16	513 790	7 437 091	356 000	8710	29	29	57	49,80	1,44	84,96	6,62	2,45
K204.16	513 775	7 437 096	344 000	12 100	174	47	221	48,13	2,01	80,57	9,19	4,85
K204B.16	513 765	7 437 099	382 000	3 2 4 0	18	50	67	53,44	0,54	93,67	2,46	0,66
K206.16	513 758	7 437 102	297 000	16 200	141	74	215	41,55	2,69	67,20	12,31	18,27
K207.16	513 749	7 437 104	366 000	6 760	59	45	104	51,20	1,12	88,25	5,14	1,06
K208.16	513 728	7 437 112	348 000	12 300	94	25	119	48,69	2,04	81,49	9,35	5,80
K209.16	513 714	7 437 117	363 000	5 120	47	24	71	50,78	0,85	88,17	3,89	5,73
K210.16	513 659	7 437 137	361 000	7 3 9 0	43	25	68	50,50	1,23	86,74	5,62	3,11
K211.16	513 647	7 437 143	368 000	8 1 4 0	39	23	63	51,48	1,35	88,17	6,19	1,99
K212.16	513 597	7 437 151	350 000	13 000	191	40	231	48,97	2,16	81,70	9,88	4,28
Gjennomsnitt			352 000	10 955	125	40	165	49,24	1,82	83,04	8,32	4,51

5.2 Planlegging og utførelse av nye undersøkelser

Alle potensielt berørte grunneiere ble informert på forhånd i brevs form om hvilke aktiviteter som var planlagt, og det ble oppfordret til å kontakte NGU hvis en hadde spørsmål.

I motsetning til i Evenesmarka ble det her prioritert å gjøre borkaksprøvetaking fra overflateboringer med håndholdt drill fremfor kjerneboring fra lastebilbasert borerigg; dette på grunn av terrengets beskaffenhet. Forekomstområdet var i hovedsak utilgjengelig for den lastebilbaserte boreriggen som var disponibel, mens overflateprøving med håndholdt slagboremaskin kan gjøres hvor som helst hvor fjell stikker opp i terrenget (Fig. 21).

Fig. 19: Foto, Nestbylia sett mot syd. Veien som vises til venstre i bildet er fylkesvei 812 mellom Saltdal og Misvær. UTM-koordinat (sone 33): 513730 Ø, 7437710 N.

Fig. 20: Foto av båndet kalkspatmarmor. UTM-koordinat (sone 33): 513720 Ø, 7436580 N.

Bergarten er generelt båndet, med cm- til dm-brede bånd av lys/henholdsvis mørk marmor. De lyse lagene er gjennomgående mer rekrystallisert og grovkornet enn de mørke lagene. Grafitt er mer finfordelt i de mørke lagene, noe som sannsynligvis er årsaken til den mørkere fargen.

Fig. 21: Feltbilder, Nestbylia. UTM-koordinat (sone 33): 513740 Ø, 7436550 N.

Borkaksprøvetaking ble utført med en batteridrevet slagbormaskin slik som vist i disse bildene. Selve boret går igjennom et hull i bunnen av en plastboks, og etter hvert som en borer nedover i den relativt myke karbonatbergarten, blir det meste av borkakset oppsamlet i boksen. Eventuell segregasjon av tungmineraler har ingen betydning i denne sammenhengen og oppsamlede prøvemateriale antas å være tilstrekkelig representativt. Hvert borehull er ca. 20 cm dypt, med diameter 16 mm. Tre slike hull bores med 1-3 meters avstand og prøvene slås sammen til én prøve, og som i neste omgang analyseres ved laboratoriet på NGU. Prøvelokalitetene framgår av Fig. 22.

5.3 Resultater

Analyser av borkaksprøvene innsamlet i 2017 er gitt i Vedlegg 6. Prøvelokalitetene framgår av kartplottet i Fig. 22 samtidig som innholdet av karbonatbundet Fe+Mn er indikert med symboler.

Fig. 23 viser lokalitetene analysert med bærbar XRF direkte på fjell. Se Kap. 3 for nærmere omtale av analysemetodene som er benyttet.

Ut fra denne sammenligningen er de tilsvarende bærbar XRF måleresultatene langs skogsbilveien (Nestbyveien) i den nordlige delen av området ganske pålitelige, og viser for en stor del karbonat med tilsvarende Fe+Mn-karakteristika som i forekomstområdet lenger syd.

Tabell 9 gir en sammenstilling av analysedata fra flere analysemetoder for utvalgte prøver. «Uløst syrerest», som er et tall for innhold av ikke-karbonat mineraler, varierer en god del fra relativt lavt (under 2 %) til ganske høyt (over 5 %).

			Nestbylia													
NGU prø	venr.		186255	186257	186260	186267	186269	186272	186279	186283	186286	186299	186302	186303	186318	ij. snitt
Felt prøv	enr.		R5	R7	R10	R17	R19	R22	R29	R33	R36	R49	R52	R53	R68	0
SiO2	vrf	%	2 4 7	0.92	1 83	4 36	<0.5	3 43	3.07	2 01	1.60	1.06	1 17	2.26	7 1 7	2.61
AI203	xrf	%	0.27	0.02	0.13	0.14	0.07	0.22	0.05	0.26	0.08	0.03	0.05	0.02	0.05	0.11
Fe2O3	xrf	%	0,164	0,027	0,072	0,051	0,172	0,098	0,028	0,103	0,099	0,027	0,092	0,028	0,025	0,076
TiO2	xrf	%	0,02	<0.01	< 0.01	<0.01	<0.01	0,01	<0.01	0,01	<0.01	<0.01	0,01	<0.01	<0.01	-
MgO	xrf	%	2,17	2,46	2,16	2,73	1,47	2,65	3,13	2,37	1,53	0,60	0,72	2,96	4,07	2,23
CaO	xrf	%	51,30	52,50	51,80	50,50	53,60	50,60	50,30	51,80	53,00	54,50	54,10	50,90	47,20	51,70
Na2O	xrf	%	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-
K2O	xrf	%	0,07	<0.01	0,03	0,02	<0.01	0,03	0,01	0,13	< 0.01	0,01	<0.01	< 0.01	0,02	0,04
MnO	xrf	%	<0.01	<0.01	< 0.01	< 0.01	0,01	< 0.01	< 0.01	<0.01	<0.01	0,01	<0.01	< 0.01	< 0.01	0,01
P2O5	xrf	%	0,03	0,02	0,03	0,08	0,03	0,05	0,02	0,04	0,02	0,04	0,02	0,02	0,07	0,03
Gl.tap		%	42,40	43,30	43,10	41,40	43,50	42,30	42,90	42,70	42,60	42,80	43,30	42,60	40,70	42,58
Sum		%	99,00	99,30	99,20	99,40	99,10	99,30	99,50	99,50	99,00	99,10	99,50	98,80	99,20	99,22
Sr	xrf	ppm	1 080	1 180	1 180	1 440	728	1 180	1 070	755	1 400	1 060	865	820	1 170	1 071
S	xrf	ppm	1 300	<200	412	<200	700	366	246	384	607	<200	329	<200	<200	543
CaO	icp	%	50,36	52,32	51,06	49,66	52,74	50,64	49,24	50,64	51,20	54,00	53,02	50,78	45,61	50,87
MgO	icp	%	2,04	2,39	1,97	2,01	1,50	2,65	3,08	1,72	1,54	0,59	0,72	2,45	3,73	2,03
Fe	icp	ppm	57	105	124	65	143	130	23	29	51	80	103	130	73	86
Mn	icp	ppm	34	16	15	18	78	32	28	26	29	85	21	15	5	31
Fe+Mn	icp	ppm	90	121	139	83	221	162	51	55	80	165	124	145	78	116
Р	icp	ppm	89	49	101	300	97	198	56	120	56	126	57	49	255	119
Sr	icp	ppm	1 090	1 220	1 220	1 480	758	1 2 1 0	1 090	768	1 410	1 090	875	860	1 180	1 096
S	icp	ppm	<40	<40	<40	<40	<40	<40	<40	<40	<40	70,90	<40	<40	<40	70,90
S	Leco	%	0,0588	< 0.02	0,0228	< 0.02	0,0252	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0,0356
тос	Leco	%	< 0.1	< 0.1	0,137	0,190	< 0.1	0,132	< 0.1	< 0.1	< 0.1	< 0.1	0,109	0,105	0,200	0,146
Uløst syrerest %		3,06	1,13	2,32	5,75	0,47	3,80	3,08	3,18	1,82	1,07	1,47	3,05	7,81	2,92	

Tabell 9: Utvalgte prøver fra Nestbylia, flere analysemetoder.

Fig. 22: Kartplott, karbonatbundet Fe+Mn i borkaksprøver, Nestbylia.

Bergartene i forekomstområdet stryker gjennomgående N-S med fall steilt mot V, dog med betydelige lokale variasjoner forårsaket av foldinger.

Fig. 23: Kartplott av estimert karbonatbundet Fe+Mn basert på XRF totalanalyser direkte på fjell.
6. EVENESMARKA-NESTBYLIA SAMMENLIGNING

Variasjonen i karbonatbundet CaO-MgO innhold (ICP-AES analyser) for Nestbylia og Evenesmarka er illustrert i Fig. 24, og det framgår at MgO-innholdet er klart høyest i Evenesmarka. Tilsvarende er medianverdien høyest for Evenesmarka (5,85 % CaO) sammenlignet med Nestbylia (2,21 % MgO).

Når det gjelder innhold av karbonatbundet Fe+Mn så har en stor andel av de analyserte prøvene i begge forekomstene under 250 ppm slik det framgår av de to histogrammene i Fig. 25. Nestbylia har en mindre andel av prøver med Fe+Mn > 250 ppm enn Evenesmarka, og medianverdien er noe lavere, henholdsvis 145 og 162 ppm Fe+Mn.

De to forekomstområdene er følgelig ganske like når det gjelder jern og mangan, men klart forskjellig i magnesiuminnhold.

Høyere magnesiuminnhold i Evenesmarka gjenspeiles i høyere dolomittinnhold, og avblanding mellom kalkspat og dolomitt slik som vist i Fig. 26B er karakteristisk.

Inneslutninger av andre²⁰ mineraler i karbonat er karakteristisk for begge forekomstene, slik som vist i eksemplene i Fig. 26 og Fig. 27.

Fig. 24: Karbonatbundet CaO - MgO X-Y diagram, Evenesmarka jfr. Nestbylia.

²⁰ Grafitt, kvarts, muskovitt, m.fl.

Fig. 25: Histogram, karbonatbundet Fe+Mn i borkaksprøver, Nestbylia og Evenesmarka.

Fig. 26: SEM bse-bilder, Kvitfors Bh2, Evenesmarka.

Mineralenes opptreden og relative mengdeforhold varierer en god del, noe som vanligvis har sammenheng med bergartens båndete karakter. Visse lag kan være dolomittrike med mineralsammenvoksinger slik som vist i Fig. 26B, mens andre lag har lavt dolomitt-innhold slik som i Fig. 26A. Ren dolomitt forekommer også. Grafitt er vanligvis ganske finfordelt, stedvis med en tendens til anrikning langs korngrenser.

Fig. 27: SEM bse-bilder, Nestbylia.

Begge SEM-bildene i Fig. 27 viser en karakteristisk grovkornet tekstur. Bergarten i det øverste bildet er en magnesiumfattig variant og inneholder ikke synlig dolomitt, mens kalkspaten i det nedre bildet har en mengde inneslutninger av dolomitt. Grafitt opptrer her i stor grad på korngrensene mellom de andre mineralene. I det øverste bildet ser man også at grafitten finnes som inneslutninger i kalkspatmineralkornene. Kvartinneslutninger i kalkspat er karakteristisk for begge lokalitetene.

7. DISKUSJON

Det geologiske ressursgrunnlaget er utvilsomt stort for begge områdene.

Det undersøkte området i *Evenesmarka* strekker seg fra sjøen (Ofotfjorden) ved Rørvika like øst for Evenestangen, sammenhengende nordover mot Kvitfors, i størrelsesorden 7-8 km, med varierende mektigheter av de beste sonene.

Den geologiske oppbyggingen er mer kompleks enn tidligere antatt, og er ennå ikke forstått i detalj.

Magnesiuminnholdet (MgO) forårsaket av dolomitt, er gjennomgående høyt. Dette er en ulempe fordi det vil bli mer komplekst å produsere rene mineralprodukter av kalkspat og eventuelt dolomitt.

Borekjernene i fire (av fem) borehull viser en til dels betydelig variasjon i karbonatbundet jern og mangan. Dette ansees som uheldig i og med at innslag av karbonat med forhøyede verdier av disse elementene kan tenkes å kunne skape problemer i en eventuell framtidig driftsituasjon.

Unntaket er Kvitfors Bh2 som i hele borehullets lengde (25 m) har bemerkelsesverdig lavt innhold av karbonatbundet jern og mangan, men magnesiuminnholdet er forholdsvis høyt (i gjennomsnitt 4,61 % MgO, karbonatbundet; jfr. Tabell 3).

Vurdert opp mot potensielle arealkonflikter er store deler av området bebygd eller ligger nær bebyggelse, samt at de sydlige deler av forekomstområdet ligger like ved Evenes flyplass og er til dels innenfor militært område. Arealkonflikten i tilfelle industriell utbygging forventes derfor å bli relativt betydelig.

Nestbylia ligger sørvest for Rognan, i luftlinje 6-7 km fra sjøen.

I likhet med Evenesmarka er forekomststørrelsen betydelig. For eksempel har det borkaksprøvetatte området et areal på omtrent 1.5 km²; ned til 100 m dyp tilsvarer dette en forekomststørrelse på i størrelsesorden 300 millioner tonn. Omtrent 80% av karbonat i dette området synes å ha potensielt god kvalitet med lavt karbonatbundet jern- og mangan-innhold.

Det ble i dette prosjektet ikke utført kjerneboringer i Nestbylia, slik at en ikke har tilsvarende informasjon som for Evenesmarka når det gjelder bergartens detaljvariasjoner.

Vurdert opp mot potensielle arealkonflikter har området ingen bebyggelse, noe som kan være en fordel ved en eventuell framtidig industriutnyttelse.

Begge forekomstene har gjennomgående lavt innhold av karbonatbundet jern og mangan, til dels svært lavt, noe som gir mulighet for produksjon av mineralprodukter med høy hvithet. Magnesiuminnholdet er imidlertid høyt (ulempe), særlig gjelder dette for Evenesmarka som for en stor del består av en blandingsbergart av kalkspat og dolomitt.

Mineralogien er potensielt problematisk for begge forekomstene, som skyldes mange inneslutninger i kalkspat av mineraler som dolomitt, grafitt, kvarts, m.fl., jfr. Fig. 26 og Fig. 27. Det vil bli utfordrende å produsere tilstrekkelig rene kalkspatkonsentrater ved en eventuell industriell produksjon. Karbonatbergarten i Kvitfors Bh2 (Evenesmarka, se Vedlegg 2) er bemerkelsesverdig ved at den har et eksepsjonelt lavt²¹ innhold av karbonatbundet jern og mangan i hele borehullets lengde (25 m). Utstrekning og øvrige karakteristika av denne bergartsvarianten bør undersøkes i større detalj.

Det er imidlertid usikkert i hvilken grad de aktuelle forekomstområdene eller visse deler som for eksempel ved Kvitfors Bh2 i Evenesmarka kan ha interesse i dagens marked.

I eventuelle videre undersøkelser bør forekomstene vurderes ut fra et prosesseringssynspunkt, dvs. at det lages mineralprodukter så godt det lar seg gjøre, og at disse produktene vurderes i forhold til markedets kvalitetskrav. Dette vil kreve samspill med aktører som har ekspertkompetanse innen karbonatprosessering og -markedsforhold.

8. KONKLUSJON

Mineralressursgrunnlaget er svært stort for både Evenesmarka og Nestbylia, og stort nok for en betydelig framtidig industriell utvikling.

Begge forekomstene ansees å inneholde karbonatbergarter av potensiell interesse mht. anvendelser hvor høy hvithet er en kvalitetsparameter.

Magnesiuminnholdet er relativt høyt, mest markant for Evenesmarka. Dette ansees som en ulempe.

Mineralogien er i begge tilfeller potensielt problematisk på grunn av mange inneslutninger av andre mineraler i kalkspat, og det vil sannsynligvis av den grunn bli spesielt utfordrende å produsere markedsattraktive mineralkonsentrater av kalkspat og eventuelt dolomitt.

Potensiell arealkonflikt er vesensforskjellig for de to forekomstområdene. I Nestbylia er det ingen bebyggelse, mens store deler av Evenesmarka er et relativt bebygd område med nærhet til Evenes flyplass og militære anlegg.

Nestbylia ansees alt i alt bedre egnet for videre utvikling fordi arealsituasjonen er relativt gunstig, samt at magnesiuminnhold er lavere enn for Evenesmarka.

Følgende videre undersøkelser anbefales:

- 1. Nestbylia: Forekomstens geografiske utstrekning og mineralkjemiske karakteristika kartlegges i større detalj. Dette bør kombineres med etablering av en 3D-modell av forekomstområdet og beregninger av forekomsttonnasjer basert på ulike dybdealternativer.
- 2. Evenesmarka: Utstrekning og mineralkjemiske karakteristika for karbonatbergarten som opptrer i det andre kjerneborehullet ved Kvitfors bør undersøkes i større detalj, i første omgang i form av detaljert geologisk kartlegging i nærområdet og borkaks overflateprøvetaking.

²¹ Gjennomsnitt 54 ppm karbonatbundet Fe+Mn. Innholdet av karbonatbundet magnesium er i gjennomsnitt 4.61

[%] MgO. Se Tabell 1 og Vedlegg 2.

3. Mineralprosessering: Det bør lages mineralkonsentrater²² av karbonatbergart fra ulike deler av Nestbylia forekomstområde og av karbonatbergarten i Kvitfors Bh2 i Evenesmarka. Disse konsentratene må så evalueres i samspill med én eller flere kompetente karbonatbedrifter.

En eventuell videre utvikling krever langsiktighet.

Et ambisiøst framtidsscenario er integrert gruvedrift og prosessering, dvs. at det produseres høyverdige karbonatprodukter på stedet. Hvorvidt dette kan bli realiserbart vil i første rekke avhenge av mineralprosesseringen, det vil si at en må få på plass en industrielt egnet metode for produksjon av konkurransedyktige og markedsattraktive karbonatprodukter.

9. REFERANSER

- Gjelle, S., Solli, A. & Melezhik, V. 2013: Bedrock map of the Rognan area, Nordland, North Norway. In: Melezhik, V.A., Roberts, D., Gjelle, S., Solli, A., Fallick, A.E., Kuznetsov, A.B. & Gorokhov, I.M. 2013: Isotope chemostratigraphy of high-grade marbles in the Rognan area, North-Central Norwegian Caledonides: a new geological map, and tectonostratigraphic and paleogeographic implications. Norwegian Journal of geology, Vol. 93, 107-139.
- Gustavson, M. 1974: Berggrunnskart Narvik M 1:250 000. Norges geologiske undersøkelse.
- Harben, P.W. 2002: The industrial minerals handybook a guide to markets, specifications, & prices, fourth edition. Industrial Minerals Information Services, UK, 412 p.
- Korneliussen, A., Raaness, A., Schaller, A. & Gautneb, H. 2011: Forekomster av kalsiumkarbonat i Evenesområdet. NGU rapport 2011.040, 40 s.
- Korneliussen, A., Raaness, A. & Gautneb, H. 2014: Chemical and mineralogical characterisation of carbonate deposits in Norway. NGU report 2013.055, 169 p.
- Melezhik, V. A., Zwaan, B. K., Motuza, G., Roberts, D., Solli, A., Fallick, E., Gorokhov, I.
 M. & Kusnetzov, A. B. 2003: New insights into the geology of high-grade Caledonian marbles based on isotope chemostratigraphy. Norwegian Journal of Geology 83, 209-242.
- Melezhik, V.A., Roberts, D., Gjelle, S., Solli, A., Fallick, A.E., Kuznetsov, A.B. & Gorokhov, I.M. 2013: Isotope chemostratigraphy of high-grade marbles in the Rognan area, North-Central Norwegian Caledonides: a new geological map, and tectonostratigraphic and paleogeographic implications. Norwegian Journal of geology, Vol. 93, 107-139.
- Zwaan, K. B., Motuza, G., Melezhik, V. M., Solli, A. & Roberts., D. 2002: Berggrunnsgeologisk kartlegging av karbonatforekomster i Evenes og Skånland kommune. NGU rapport 2002.088. 43 s.
- Øvereng, O. 2000: Kravspesifikasjoner for karbonatråstoffer for økonomisk utnyttelse. NGU rapport 2000.040, 126 s.
- Øvereng, O. 2003: En vurdering av kalkspat- og dolomittpotensialet i kommunene Tjeldsund, Evenes og Skånland. NGU rapport 2003.009, 58 s.

²² Mineralkonsentrater bør lages (i laboratorium) både med konvensjonelle mekanisk-kjemiske metoder tilsvarende det som benyttes av dagens karbonatindustri, og med ukonvensjonelle eksperimentelle metoder. En aktuell eksperimentell metode er selektiv oppløsning av karbonat i karbonsyre og i neste prosesstrinn utfelling som et høyrent produkt. Dette blir ikke nærmere diskutert i denne rapporten.

Vedlegg 1: KARAKTERISERING AV MARMOR, KVITFORS BH1, EVENESMARKA

Analyser av borehull 1 Kvitfors, Evenesmarka.

ICP-AES-analyse, analyseoppdrag 20180020 UTM-koordinater: 571532 (Ø),7601180 (N), sone 33 Borehullretning (asimut)/stupning: 270°/69°

	0,	<i>n</i>	0	,		Analyse							Beregnet								
		Pr	Prøveintervall (m)		gart	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	%			
NGUID	Prøvenr	Fra	Til	L	Ber	Fe	Mg	Ca	Mn	Р	Sr	Fe+Mn	CaO	MgO	Dolom.	Kalksp.	Annet	Sum			
193501	K1/0.0-2.0	-	2,00	2,00	Mg-Kspm	213	32 000	311 000	13	716	624	226	43,51	5,31	24,32	64,17	11,51	100,00			
193502	K1/2.0-4.0	2,00	4,00	2,00	Mg-Kspm	180	31 600	318 000	15	447	656	195	44,49	5,24	24,01	66,08	9,91	100,00			
193503	К1/4.0-6.0	4,00	6,00	2,00	Mg-Kspm	139	26 900	312 000	19	329	890	158	43,65	4,46	20,44	66,52	13,04	100,00			
193504	K1/6.0-8.0	6,00	8,00	2,00	Mg-Kspm	121	37 100	319 000	16	325	588	137	44,63	6,15	28,19	64,06	7,75	100,00			
193505	К1/8.0-10.0	8,00	10,00	2,00	Mg-Kspm	121	36 300	314 000	18	550	541	139	43,93	6,02	27,58	63,15	9,27	100,00			
193506	K1/10.0-12.4	10,00	12,40	2,40	Mg-Kspm	188	43 800	283 000	29	872	562	217	39,59	7,26	33,28	52,35	14,37	100,00			
	Ikke analysert	12,40	13,65	1,25	Marmor m	ned kvartslinser															
193507	K1/13.65-15.0	13,65	15,00	1,35	Mg-Kspm	263	44 200	303 000	33	1 320	573	296	42,39	7,33	33,59	57,16	9,26	100,00			
193508	K1/15.0-17,45	15,00	17,46	2,46	Mg-Kspm	68	29 300	328 000	12	240	490	80	45,89	4,86	22,26	69,51	8,22	100,00			
193509	K1/17,45-17,85	17,45	17,85	0,40	Dolomitt	268	96 800	201 000	44	653	235	312	28,12	16,05	73,55	10,13	16,32	100,00			
193510	K1/17,85-20.0	17,85	20,00	2,15	Mg-Kspm	164	39 600	309 000	29	1 760	663	193	43,23	6,57	30,09	60,55	9,36	100,00			
193511	K1/20.0-22,0	20,00	22,00	2,00	Mg-Kspm	195	33 300	314 000	35	306	585	230	43,93	5 <i>,</i> 52	25,30	64,38	10,31	100,00			
193512	K1/22,0-23,55	22,00	23,85	1,85	Mg-Kspm	165	37 200	314 000	41	131	338	206	43,93	6,17	28,27	62,78	8,96	100,00			
193513	K1/23.85-27,0	23,85	27,00	3,15	Mg-Kspm	165	35 700	310 000	61	663	425	226	43,37	5 <i>,</i> 92	27,13	62,40	10,47	100,00			
193514	K1/27.0-30.0	27,00	31,70	4,70	Dolomitt	618	95 400	190 000	73	1 310	247	691	26,58	15,82	72,49	7,97	19,54	100,00			
193515	K1/31.7-34.0	31,70	34,00	2,30	Mg-Kspm	323	28 900	324 000	66	2 010	634	389	45,33	4,79	21,96	68,68	9,36	100,00			
193516	K1/34.0-36.4	34,00	37,30	3,30	Mg-Kspm	364	32 200	319 000	64	832	441	428	44,63	5,34	24,47	66,08	9,45	100,00			
193517	K1/37.3-40,0	37,30	40,00	2,70	Mg-Kspm	111	38 200	283 000	32	1 540	567	143	39,59	6,33	29,03	54,66	16,32	100,00			
193518	K1/40.0-42.0	40,00	42,00	2,00	Mg-Kspm	303	46 600	290 000	55	347	380	358	40,57	7,73	35,41	52,94	11,65	100,00			
193519	K1/42.0-44.0	42,00	44,00	2,00	Mg-Kspm	106	28 800	324 000	22	562	491	128	45,33	4,78	21,88	68,72	9,39	100,00			
193520	K1/44.0-46.0	44,00	46,00	2,00	Mg-Kspm	149	36 500	290 000	32	1 110	433	181	40,57	6,05	27,73	57,10	15,17	100,00			
193521	K1/46.0-48.0	46,00	48,00	2,00	Mg-Kspm	159	36 600	261 000	37	931	223	196	36,51	6,07	27,81	49,84	22,35	100,00			
193522	K1/48.0-50.0	48,00	50,00	2,00	Mg-Kspm	346	34 500	287 000	49	860	268	395	40,15	5,72	26,21	57,17	16,61	100,00			
Gjennon	nsnitt:					215	40 977	295 636	36	810	493	251	41,36	6,79	31,14	56,66	12,21	100,00			

Mg-Kspm: Mg-rik kalkspatmarmor

Kvitfors Bh1, 0-10 m

Generell beskrivelse:

0 - 10 m: Båndet grå-hvit kalkspat-dolomitt marmor, fin til middels grovkornet. Relativt høyt innhold av silikatmineraler, hovedsakelig kvarts.

Vedlegg 1: Kvitfors Bh1, side 3

• Sorte flekker er opake mineraler som grafitt og eventuelt pyritt.

Kvitfors Bh1, 10-20 m.

Generell beskrivelse:

10,0 - 12,4 m: Båndet grå-hvit kalkspat-dolomitt marmor, fin til middelskornet.

Tynne sulfidrike bånd, spesielt fra 10,4 - 12,4 m.

- 13,65: Vekslende grov, hvit marmor med kvarts-slirer og tynne årer.
- 17,45: Båndet marmor med fine mikroforkastninger ved 15,6 m; for øvrig spredte kalkspatårer.
- 17,85: Finkornet dolomitt.
- 20,00: Båndet marmor, vekslende fin- og grovkornet.

Vedlegg 1: Kvitfors Bh1, side 6

• Sorte flekker er opake mineraler som grafitt og eventuelt pyritt.

Vedlegg 1: Kvitfors Bh1, side 7

Foto av kjernekasse, Kvitfors Bh1, 20-30 m.

Generell beskrivelse:

Båndet grå-hvit kalkspatmarmor, middels til grovkornet (lyse bånd) fram til 27 m. Deretter grå, finkornet dolomitt med relativt høyt innhold av silikatmineraler, samt inneholder stedvis noe sinkblende (ikke analysert).

Kvitfors Bh1, 30-40 m.

Generell beskrivelse:

Vekslende marmor og glimmerskifer fram til 31,7 m, stedvis markant innhold av sulfidmineraler. Deretter båndet kalkspatmarmor til 36,4 m. Kalkspatmarmor med glimmerrike lag og innslag av kvartsårer fram til 37,3 m. Deretter grå, båndet kalkspat-dolomitt marmor; cm-tykke lag er stedvis ren dolomitt.

Vedlegg 1: Kvitfors Bh1, side 10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 m 40-41 m 41-42 m 42-43 m 43-44 m 44-45 m 45-46 m 46-47 m 47-48 m 48-49 m 49-50 m

Kvitfors Bh1, 40-50 m.

Generell beskrivelse:

Grå, båndet, relativt finkornet kalkspat-dolomitt marmor; noen tynne lag (< 1 cm) er ren dolomitt. Kvartsårer ved 46,4-46,7.

Vedlegg 2: KARAKTERISERING AV MARMOR, KVITFORS BH2, EVENESMARKA

Analyser av borehull 2 Kvitfors, Evenesmarka.

ICP-AES-analyse, analyseoppdrag 20180020 UTM-koordinater: 571371 (Ø), 7600221 (N), sone 33 Borehullretning (asimut)/stupning: 270°/69°

			ť			Analyse							Beregnet								
	-	Prø	veinterva	all (m)	erga	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	%			
NGUID	Prøvenr	Fra	Til	L	Ä	Fe	Mg	Ca	Mn	Р	Sr	Fe+Mn	CaO	MgO	Dolom.	Kalksp.	Annet	Sum			
193523	К2/0.0-2.9	-	2,90	2,90	Mg-Kspm	43	27 300	325 000	10,40	207	837	53	45,47	4,53	20,74	69,59	9,67	100,00			
193524	K2/2.9-4.2	2,90	4,20	1,30	Mg-Kspm	70	36 500	315 000	16,20	315	622	87	44,07	6,05	27,73	63,31	8,95	100,00			
193525	K2/4.2-6.0	4,20	6,00	1,80	Mg-Kspm	24	12 500	353 000	5,00	476	1020	29	49,38	2,07	9,50	82,65	7,85	100,00			
193526	K2/6.0-7.4	6,00	7,40	1,40	Mg-Kspm	39	30 800	331 000	5 <i>,</i> 00	226	738	44	46,31	5,11	23,40	69,64	6,96	100,00			
193527	K2/7.4-7.9	7,40	7,90	0,50	Mg-Kspm	105	53 000	275 000	14,00	370	478	119	38,47	8,79	40,27	46,57	13,16	100,00			
193528	К2/7.9-10.0	7,90	10,00	2,10	Mg-Kspm	26	14 900	354 000	5,00	271	1030	31	49,52	2,47	11,32	81,91	6,77	100,00			
193529	K2/10.0-12.4	10,00	12,40	2,40	Mg-Kspm	35	22 100	340 000	5,00	293	1000	40	47,57	3,66	16,79	75,46	7,74	100,00			
193530	К2/12.4-14.55	12,40	14,55	2,15	Mg-Kspm	32	21 800	344 000	5,00	288	939	37	48,13	3,61	16,56	76,58	6,85	100,00			
193531	K2/14.55-16.1	14,55	16,10	1,55	Mg-Kspm	79	48 800	293 000	12,10	270	539	91	40,99	8,09	37,08	52,78	10,14	100,00			
193532	K2/16.1-18.8	16,10	18,80	2,70	Mg-Kspm	34	16 000	347 000	5,00	310	973	39	48,55	2,65	12,16	79,72	8,13	100,00			
193533	K2/18.8-21.0	18,80	21,00	2,20	Mg-Kspm	50	33 900	326 000	5,00	211	752	55	45,61	5,62	25,76	67,12	7,12	100,00			
193534	K2/21.0-23.0	21,00	23,00	2,00	Mg-Kspm	37	27 400	324 000	5,00	271	901	42	45,33	4,54	20,82	69,30	9,88	100,00			
193535	K2/23.0-25.1	23,00	25,10	2,10	Mg-Kspm	29	16 200	343 000	5,00	347	1480	34	47,99	2,69	12,31	78,64	9,05	100,00			
Gjennon	nsnitt:					46	27 785	328 462	7,52	297	870	54	45,95	4,61	21,11	70,25	8,64	100,00			

Mg-Kspm: Mg-rik kalkspatmarmor

Foto av kjernekasse, Kvitfors Bh2, 0-10 m.

Generell beskrivelse:

0 - 10 m: Båndet grå-hvit kalkspat-dolomitt marmor, fin til middels grovkornet. Relativt høyt innhold av silikatmineraler, hovedsakelig kvarts.

Foto av kjernekasse, Kvitfors Bh2, 10-20 m.

Generell beskrivelse:

10 - 20 m: Båndet grå-hvit kalkspat-dolomitt marmor, fin til middels grovkornet. Relativt høyt innhold av silikatmineraler, hovedsakelig kvarts.

Vedlegg 2: Kvitfors Bh2, side 6

Vedlegg 2: Kvitfors Bh2, side 7

Foto av kjernekasse, Kvitfors Bh2, 20-25 m.

Generell beskrivelse:

20 – 25.2 m: Båndet grå-hvit kalkspat-dolomitt marmor, fin til middels grovkornet. Relativt høyt innhold av silikatmineraler, hovedsakelig kvarts.

Vedlegg 2: Kvitfors Bh2, side 9

Vedlegg 2: Kvitfors Bh2, side 10

Vedlegg 3: KARAKTERISERING AV MARMOR, LIAKOLLVEIEN BH1, EVENESMARKA

Analyser av borehull 1 Liakollveien, Evenesmarka.

ICP-AES-analyse, analyseoppdrag 20180020 UTM-koordinater: 571162 (Ø), 7597713 (N), sone 33 Borehullretning (asimut)/stupning: 270°/69°

	01	,,	1 0		ť	Analyse							Beregnet								
		Prø	veinterv	all (m)	erga	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	%			
NGUID	Prøvenr	Fra	Til	L	ğ	Fe	Mg	Ca	Mn	Ρ	Sr	Fe+Mn	CaO	MgO	Dolom.	Kalksp.	Annet	Sum			
193536	L1/0.0-3.2	-	3,20	3,20	Mg-Kspm	111	15 400	336 000	19,00	282	471	130	47,01	2,55	11,70	77,23	11,07	100,00			
193537	L1/3.2-4.5	3,20	4,50	1,30	Mg-Kspm	515	48 100	236 000	37,70	711	362	553	33,02	7,97	36,55	38,89	24,56	100,00			
193538	L1/4.5-6.5	4,50	6,50	2,00	Mg-Kspm	291	31 800	281 000	32,30	840	385	323	39,31	5,27	24,16	56,79	19,04	100,00			
193539	L1/6.5-7.2	6,50	7,20	0,70	Mg-Kspm	442	52 600	222 000	30,70	1450	619	473	31,06	8,72	39,97	33,55	26,48	100,00			
193540	L1/7.2-8.5	7,20	8,50	1,30	Mg-Kspm	279	52 400	258 000	32,60	619	500	312	36,09	8,69	39,82	42,59	17,59	100,00			
193541	L1/8.5-11.0	8,50	11,00	2,50	Mg-Kspm	180	27 800	322 000	17,10	396	519	197	45,05	4,61	21,12	68,64	10,24	100,00			
193542	L1/11.0-13.0	11,00	13,00	2,00	Mg-Kspm	917	36 600	284 000	64,50	486	481	982	39,73	6,07	27,81	55 <i>,</i> 56	16,63	100,00			
193543	L1/13.0-15.0	13,00	15,00	2,00	Mg-Kspm	149	31 200	306 000	22,10	1400	479	171	42,81	5,17	23,71	63,26	13,03	100,00			
193544	L1/15.0-17.0	15,00	17,00	2,00	Mg-Kspm	273	43 800	300 000	33,10	431	420	306	41,97	7,26	33,28	56,58	10,14	100,00			
193545	L1/17.0-19.0	17,00	19,00	2,00	Mg-Kspm	104	35 000	320 000	18,70	451	396	123	44,77	5,80	26,59	65,18	8,23	100,00			
193546	L1/19.0-22.2	19,00	22,20	3,20	Mg-Kspm	856	35 300	295 000	72,10	613	603	928	41,27	5,85	26,82	58,83	14,34	100,00			
	Ikke analysert	22,20	24,10	1,90	Sulfidrik ka	lksilikat	bergart														
193547	L1/24.1-26.2	24,10	26,20	2,10	Mg-Kspm	196	49 500	287 000	47,60	1640	706	244	40,15	8,21	37,61	51,00	11,39	100,00			
	Ikke analysert	26,20	26,50	0,30	Sulfidrik ka	lksilikat	bergart														
193548	L1/26.5-29.0	26,50	29,00	2,50	Mg-Kspm	220	27 700	320 000	44,50	600	698	265	44,77	4,59	21,05	68,18	10,77	100,00			
193549	L1/29.0-31.0	29,00	31,00	2,00	Mg-Kspm	145	39 200	282 000	26,50	735	956	172	39,45	6,50	29,79	54,00	16,22	100,00			
193550	L1/31.0-33.0	31,00	33,00	2,00	Mg-Kspm	134	29 400	324 000	31,90	382	913	166	45,33	4,87	22,34	68,48	9,18	100,00			
193551	L1/33.0-35.0	33,00	35,00	2,00	Mg-Kspm	60	28 100	325 000	24,10	864	863	85	45,47	4,66	21,35	69,26	9,39	100,00			
193552	L1/35.0-37.0	35,00	37,00	2,00	Mg-Kspm	37	21 900	343 000	14,40	457	910	51	47,99	3,63	16,64	76,29	7,07	100,00			
193553	L1/37.0-40.0	37,00	40,00	3,00	Mg-Kspm	51	27 600	331 000	18,00	339	760	69	46,31	4,58	20,97	70,96	8,07	100,00			
Gjennom	snitt:					276	35 189	298 444	32,61	705	613	308	41,75	5,83	26,74	59,74	13,52	100,00			

Mg-Kspm: Mg-rik kalkspatmarmor

Foto av kjernekasse, Liakollveien Bh1, 0-10 m.

Generell beskrivelse:

0 - 10 m: Båndet grå-hvit kalkspat-dolomitt marmor, fin til grovkornet. Til dels svært høyt innhold av silikatmineraler, hovedsakelig kvarts.

Vedlegg 3: Liakollveien Bh1, side 6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 m 10-11 m 11-12 m 12-13 m 13-14 m 14-15 m Man No. of Star America 15-16 m 16-17 m 17-18 m 18-19 m 19-20 m

Foto av kjernekasse, Liakollveien Bh1, 10-20 m.

Generell beskrivelse:

10 - 20 m: Båndet grå-hvit kalkspat-dolomitt marmor, fin til middels grovkornet. Til dels høyt innhold av silikatmineraler, hovedsakelig kvarts.

Foto av kjernekasse, Liakollveien Bh1, 20-30 m.

Generell beskrivelse:

20-22,2 m: Båndet, grå-hvit kalkspat-dolomitt marmor med varierende kornstørrelse;

22,2-24,1m: Glimmerskifer med varierende utseende; 24,1-26,2m: Båndet marmor; 26,2-26,5m: Glimmerskifer, sulfidholdig (pyritt, magnetkis og sinkblende). 26,5-30m: Båndet kalkspat-dolomitt marmor.

Vedlegg 3: Liakollveien Bh1, side 11

Foto av kjernekasse, Liakollveien Bh1, 30-40 m.

Generell beskrivelse:

30-40 m: Båndet grå-hvit kalkspat-dolomitt marmor, fin til middels grovkornet.

Til dels høyt innhold av silikatmineraler, hovedsakelig kvarts.

Vedlegg 4: KARAKTERISERING AV MARMOR, LIAKOLLVEIEN BH2, EVENESMARKA

Analyser av borehull 2 Liakollveien, Evenesmarka.

ICP-AES-analyse, analyseoppdrag 20180020 UTM-koordinater: 571055 (Ø), 7597688 (N), sone 33 Borehullretning (asimut)/stupning: 270°/50°

					ť	Analyse							Beregnet							
	_	Prøveintervall (m)			erga	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	%		
NGUID	Prøvenr	Fra	Til	L	Å	Fe	Mg	Ca	Mn	Ρ	Sr	Fe+Mn	CaO	MgO	Dolom.	Kalksp.	Annet	Sum		
193554	L2/0-2.5	-	2,50	2,50	Mg-Kspm	45	16 700	355 000	10,50	287	988	56	49,66	2,77	12,69	81,42	5,89	100,00		
193555	L2/2.5-5.8	2,50	5,80	3,30	Mg-Kspm	40	21 800	349 000	12,20	384	901	53	48,83	3,61	16,56	77,82	5,61	100,00		
193556	L2/5.8-6.1	5,80	6,10	0,30	Dolomitt	280	97 100	212 000	29,00	186	264	309	29,66	16,10	73,78	12,74	13,48	100,00		
193557	L2/6.1-7.9	6,10	7,90	1,80	Mg-Kspm	88	41 800	293 000	21,10	505	742	109	40,99	6,93	31,76	55,66	12,58	100,00		
193558	L2/7.9-8.9	7,90	8,90	1,00	Mg-Kspm	52	26 900	342 000	11,90	234	677	64	47,85	4,46	20,44	73,98	5,58	100,00		
193559	L2/8.9-9.3	8,90	9,30	0,40	Dolomitt	104	70 600	277 000	18,70	253	343	123	38,75	11,71	53,65	39,82	6,53	100,00		
193560	L2/9.3-12.15	9,30	12,15	2,85	Mg-Kspm	284	34 100	290 000	37,40	527	940	321	40,57	5 <i>,</i> 65	25,91	58,09	16,00	100,00		
193561	L2/12.15-14.5	12,15	14,50	2,35	Mg-Kspm	64	33 000	311 000	12,00	245	649	76	43,51	5,47	25,08	63,76	11,16	100,00		
193562	L2/14.5-17.35	14,50	17,35	2,85	Mg-Kspm	194	59 000	268 000	33,30	382	357	227	37,49	9,78	44,83	42,36	12,81	100,00		
	lkke analysert	17,35	17,55	0,20	Silikatrik,	urein marmor														
193563	L2/17.55-20.7	17,55	20,70	3,15	Dolomitt	738	87 300	230 000	86,90	264	218	825	32,18	14,47	66,34	21,26	12,41	100,00		
	lkke analysert	20,70	45,85	25,15	Vekslende	de glimmerskifer og rosabåndet marmor														
193564	L2/45.85-48.0	45,85	48,00	2,15	Mg-Kspm	475	64 200	271 000	70,40	628	507	545	37,91	10,64	48,78	40,96	10,25	100,00		
193565	L2/48.0-50.0	48,00	50,00	2,00	Mg-Kspm	77	35 300	316 000	17,90	244	647	94	44,21	5 <i>,</i> 85	26,82	64,06	9,12	100,00		
Gjennomsnitt:						203	48 983	292 833	30,11	345	603	234	40,97	8,12	37,22	52,66	10,12	100,00		

Mg-Kspm: Mg-rik kalkspatmarmor

Foto av kjernekasse, Liakollveien Bh2, 0-10 m.

Generell beskrivelse:

0 - 10 m: Båndet grå-hvit kalkspat-dolomitt marmor, fin til middels grovkornet. Relativt høyt innhold av silikatmineraler, hovedsakelig kvarts.

0.1 0.2 0.6 0.0 0.3 0.4 0.5 0.7 0.8 0.9 1.0 m 10-11 m 11-12 m 12-13 m 13-14 m 14-15 m 15-16 m 16-17 m 17-18 m 18-19 m 19-20 m

Foto av kjernekasse, Liakollveien Bh2, 10-20 m.

Generell beskrivelse:

10 - 20 m: Båndet grå-hvit kalkspat-dolomitt marmor, fin- til grovkornet. Relativt høyt innhold av silikatmineraler, hovedsakelig kvarts. Noen mektigere lyse/hvite lag (dolomittiske) etter 18m.

Vedlegg 4: Liakollveien Bh2, side 8

0.1 0.2 0.5 0.6 0.0 0.3 0.4 0.7 0.8 0.9 1.0 m 20-21 m 21-22 m 22-23 m 23-24 m 24-25 m 1 1 1 1 1 25-26 m 26-27 m 27-28 m 28-29 m 29-30 m

Foto av kjernekasse, Liakollveien Bh2, 20-30 m.

Generell beskrivelse:

20 - 30 m: Vekslende glimmerskifer (20,7 – 22,4 m) og urein kalkspatmarmor, markant rosabåndet kalkspatmarmor fra 24,7 m. Relativt høyt innhold av silikatmineraler, hovedsakelig kvarts.

Foto av kjernekasse, Liakollveien Bh2, 30-40 m.

Generell beskrivelse:

30 - 40 m: Grå, båndet marmor, stedvis markant glimmerrik (muskovitt og til dels biotitt).

Foto av kjernekasse, Liakollveien Bh2, 40-50 m.

Generell beskrivelse:

40 - 50 m: Rosabåndet marmor fram til 43,25 m, med biotittrike lag, til dels amfibolittisk. Amfibolittisk fra 43,25 m.

Vedlegg 5: KARAKTERISERING AV MARMOR, LIAKOLLVEIEN BH3, EVENESMARKA

Analyser av borehull 3 Liakollveien, Evenesmarka.

ICP-AES-analyse, analyseoppdrag 20180020 UTM-koordinater: 570945 (Ø), 7597986 (N), sone 33 Borehullretning (asimut)/stupning: 270°/69°

					t	Analyse							Beregnet							
	_	Prøveintervall (m)			erga	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	%		
NGUID	Prøvenr	Fra	Til	L	ä	Fe	Mg	Ca	Mn	Р	Sr	Fe+Mn	CaO	MgO	Dolom.	Kalksp.	Annet	Sum		
193566	L3/0.0-2.5	-	2,50	2,50	Mg-Kspm	46	17 500	348 000	20,10	413	808	66	48,69	2,90	13,30	79 <i>,</i> 35	7,36	100,00		
193567	L3/2.5-4.9	2,50	4,90	2,40	Mg-Kspm	517	43 400	297 000	65 <i>,</i> 90	322	524	583	41,55	7,20	32,98	56,00	11,03	100,00		
193568	L3/4.9-7.0	4,90	7,00	2,10	Mg-Kspm	454	41 200	274 000	54,90	457	572	509	38,33	6,83	31,31	51,18	17,51	100,00		
193569	L3/7.0-9.45	7,00	9 <i>,</i> 45	2,45	Mg-Kspm	221	41 200	288 000	50,10	580	595	271	40,29	6,83	31,31	54,66	14,03	100,00		
193570	L3/9.45-12.05	9,45	12,05	2,60	Mg-Kspm	341	36 000	262 000	39,50	482	1260	381	36,65	5,97	27,35	50,34	22,31	100,00		
193571	L3/12.05-12.7	12,05	12,70	0,65	Dolomitt	200	111 000	223 000	32,70	233	138	233	31,20	18,40	84,34	9,76	5,90	100,00		
193572	L3/12.7-14.4	12,70	14,40	1,70	Mg-Kspm	93	43 100	293 000	19,30	210	372	112	40,99	7,15	32,75	55,13	12,13	100,00		
193573	L3/14.4-17.7	14,40	17,70	3,30	Mg-Kspm	111	39 200	305 000	22,50	255	491	134	42,67	6,50	29,79	59,72	10,50	100,00		
193574	L3/17.7-19.9	17,70	19,90	2,20	Dolomitt	610	76 300	234 000	74,70	296	252	685	32,74	12,65	57,98	26,78	15,24	100,00		
193575	L3/19.9-20.4	19,90	20,40	0,50	Mg-Kspm	33	21 700	333 000	13,80	1320	747	47	46,59	3,60	16,49	73,89	9,63	100,00		
193576	L3/20.4-23.2	20,40	23,20	2,80	Dolomitt	127	73 700	247 000	28,70	275	210	156	34,56	12,22	56,00	31,08	12,92	100,00		
193577	L3/23.2-25.5	23,20	25,50	2,30	Mg-Kspm	108	43 300	302 000	21,60	231	385	130	42,25	7,18	32,90	57,28	9,82	100,00		
193578	L3/25.5-27.3	25,50	27,30	1,80	Mg-Kspm	103	45 500	297 000	22,00	221	359	125	41,55	7,54	34,57	55,13	10,29	100,00		
193579	L3/27.3-30.4	27,30	30,40	3,10	Dolomitt	147	68 500	263 000	26,40	221	274	173	36,79	11,36	52,05	37,20	10,75	100,00		
						222	50 114	283 286	35,16	394	499	257	39,63	8,31	38,08	49,82	12,10	100,00		

Mg-Kspm: Mg-rik kalkspatmarmor

Foto av kjernekasse, Liakollveien Bh3, 0-10 m.

Generell beskrivelse:

0 - 10 m: Båndet grå-hvit kalkspat-dolomitt marmor, fin til middels grovkornet. Gjennomgående høyt innhold av silikatmineraler, hovedsakelig kvarts.

Liakollveien Bh 3, 7.6 m

Kalkspat med ørsmå inneslutninger av dolomitt

Dolomitt

200

 ΛD

mm

Mag =

100 µm

r

SEM BSE-bilde (Back Scattered Electron bilde fra skanning elektronmikroskop)

Grafitt

Kalkspatmarmor, i dette bildet uten tydelig kornstruktur. Dolomitt opptrer som distinkte korn og som ørsmå inneslutninger i kalkspat. Sorte korn er grafitt.

Vedlegg 5: Liakollveien Bh3, side 4

Liakollveien Bh 3, 8.6 m

Vedlegg 5: Liakollveien Bh3, side 6

Pvritt

Kalkspat med inneslutninger av dolomitt

100 µm

Grafitt

Dolomitt

SEM BSE-bilde

14 mm 🔩

(Back Scattered Electron bilde fra skanning elektronmikroskop)

Kalkspat-dolomitt marmor. Dolomitt opptrer som distinkte korn og som ørsmå inneslutninger i kalkspat. Sorte korn er grafitt.

· · ·

Foto av kjernekasse, Liakollveien Bh3, 10-20 m.

Generell beskrivelse:

10 - 20 m: Båndet grå-hvit kalkspat-dolomitt marmor, fin til middels grovkornet, til dels markant foldet. Gjennomgående høyt innhold av silikatmineraler, hovedsakelig kvarts.

Foto av kjernekasse, Liakollveien Bh3, 20-30 m.

Generell beskrivelse:

20 - 30 m: Båndet grå-hvit kalkspat-dolomitt marmor, fin til middels grovkornet, til dels markant foldet. Gjennomgående høyt innhold av silikatmineraler, hovedsakelig kvarts.

Foto av kjernekasse, Liakollveien Bh3, 30-40 m.

Generell beskrivelse:

30 - 40 m: Vekslende kalkspat- og dolomittmarmor fram til 30,5 m, deretter karbonatholdig, amfibolførende biotittskifer til 38,6 m. Deretter båndet, silikatrik, til dels rosabåndet kalkspatmarmor.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 m 40-41 m 41-42 m 42-43 m 43-44 m 44-45 m 45-46 m 46-47 m 47-48 m 48-49 m 49-50 m

Foto av kjernekasse, Liakollveien Bh3, 40-50 m.

Generell beskrivelse:

40 - 50 m: Vekslende glimmerrik kalkspatmarmor fram til 43,3 m, til dels rosabåndet. Deretter metagabbro.
<u>Vedlegg 6</u>

Nestbylia

ICP-AES analyser av borkaks, Nestbylia

Analyseoppdrag 2017.0178

	Koordinater (UTM33)								
Feltnr.	NGU nr	Øst	Nord	CaO	MgO	Fe	Mn	Fe+Mn	Sr
R01	186251	513 897	7 436 895	49,94	3,75	49	43	92	832
R02	186252	513 871	7 436 795	51,62	2,24	119	25	144	1 570
R03	186253	513 847	7 436 695	49,66	2,60	175	30	205	1 080
R04	186254	513 835	7 436 614	48,97	2,69	119	13	132	931
R05	186255	513 823	7 436 563	50,36	2,04	57	34	90	1 090
R06	186256	513 787	7 436 552	52,04	1,61	283	41	324	695
R07	186257	513 748	7 436 545	52,32	2,39	105	16	121	1 220
R08	186258	513 717	7 436 579	52,60	1,84	148	25	173	1 150
R09	186259	513 706	7 436 579	53,02	1,52	87	22	109	1 080
R10	186260	513 677	7 436 584	51,06	1,97	124	15	139	1 220
R11	186261	513 640	7 436 586	53,02	1,94	164	29	193	939
R12	186262	514 024	7 437 736	51,20	2,74	96	35	131	928
R13B	186263	514 001	7 437 739	49,80	2,62	737	93	830	1 230
R14	186264	513 987	7 437 739	47,43	5 <i>,</i> 39	83	22	105	1 160
R15	186265	513 971	7 437 757	52,46	1,67	49	10	59	824
R16	186266	513 947	7 437 774	20,15	0,62	665	24	689	482
R17	186267	513 909	7 437 789	49,66	2,01	65	18	83	1 480
R18	186268	513 780	7 437 825	46,59	4,44	108	43	151	666
R19	186269	513 715	7 437 830	52,74	1,50	143	78	221	758
R20	186270	513 675	7 437 851	51,20	2,25	92	38	130	814
R21	186271	513 626	7 437 887	48,41	2,98	78	43	121	592
R22	186272	513 583	7 437 903	50,64	2,65	130	32	162	1 210
R23	186273	513 514	7 437 932	50,22	1,71	157	31	188	762
R24	186274	513 956	7 438 205	52,46	1,19	65	30	95	1 100
R25	186275	513 930	7 438 201	53,02	1,60	28	10	38	1 240
R26	186276	513 874	7 438 156	49,52	2,14	317	73	390	689
R27	186277	513 821	7 438 065	48,69	3,12	177	42	219	1 010
R28	186278	513 468	7 437 917	48,83	2,72	183	35	218	1 410
R29	186279	513 408	7 437 917	49,24	3,08	23	28	51	1 090
R30	186280	513 349	7 437 907	48,97	2,88	105	15	120	1 150
R31	186281	513 282	7 437 879	49,24	4,00	20	15	35	1 090
R32	186282	513 245	7 437 844	8,03	3,48	247	43	290	133
R33	186283	513 186	7 437 829	50,64	1,72	29	26	55	768
R34	186284	513 370	7 438 003	48,69	2,75	16	13	29	1 420
R35	186285	513 461	7 437 976	50,64	1,77	114	12	126	2 120
R36	186286	513 488	7 437 917	51,20	1,54	51	29	80	1 410
R37	186287	513 538	7 438 000	52,04	1,26	26	40	66	749
R38	186288	513 671	7 438 027	47,01	5,52	77	26	103	891
R39	186289	513 667	7 438 175	46,31	4,33	120	51	171	820
R40	186290	513 788	7 438 073	47,71	2,39	148	21	169	1 740
R41	186291	513 829	7 437 995	51,48	1,87	39	24	63	1 210
R42	186292	513 888	7 437 958	47,71	4,51	94	33	127	968
R43	186293	513 909	7 438 031	46,87	2,42	38	53	91	1 230
R44	186294	513 958	7 438 015	46,73	3,61	87	51	138	1 160
R45	186295	513 983	7 437 947	50,36	1,51	60	25	85	1 440
R46	186296	514 020	7 437 847	43,93	5,11	181	42	223	1 080
R47	186297	514 133	7 437 810	18,89	11,46	19 000	911	19 911	361
R48	186298	514 045	7 437 796	51,20	1,61	89	27	116	946
R49	186299	514 063	7 437 714	54,00	0,59	80	85	165	1 090

		Koordinater (UTM33)							
Feltnr.	NGU nr	Øst	Nord	CaO	MgO	Fe	Mn	Fe+Mn	Sr
R50	186300	514 009	7 437 661	46,17	5,37	191	33	224	1 500
R51	186301	513 580	7 436 525	42,11	2,35	2 280	56	2 336	2 440
R52	186302	513 555	7 436 584	53,02	0,72	103	21	124	875
R53	186303	513 506	7 436 605	50,78	2,45	130	15	145	860
R54	186304	513 470	7 436 611	36,65	1,76	6 910	198	7 108	455
R55	186305	513 513	7 436 527	51,90	2,72	186	29	215	1 050
R56	186306	513 717	7 436 390	54,14	0,52	91	24	116	829
R57	186307	513 747	7 436 260	50,92	1,81	74	13	87	1 280
R58	186308	513 802	7 436 177	50,78	2,54	187	34	221	985
R59	186309	513 851	7 436 152	49,80	2,52	156	30	186	447
R60	186310	513 917	7 436 143	48,83	2,93	259	53	312	1 000
R61	186311	514 001	7 436 160	49,52	2,19	145	75	220	1 150
R62B	186312	514 032	7 436 069	47,43	1,62	128	45	173	1 140
R63	186313	514 052	7 435 987	44,63	3,30	209	55	264	1 150
R64A	186314	514 107	7 436 080	51,90	1,33	150	27	177	1 340
R65A	186315	514 044	7 436 205	47,85	2,90	105	45	150	1 190
R66	186316	514 010	7 436 277	45,33	2,16	931	90	1 021	825
R67	186317	514 008	7 436 403	50,08	2,25	114	50	164	961
R68	186318	514 039	7 436 584	45,61	3,73	73	10	82	1 180
R69	186319	514 056	7 436 728	50,92	1,10	104	24	128	1 970
R70	186320	514 032	7 436 830	52,18	0,49	84	15	99	1 360
R71	186321	513 956	7 436 889	50,64	2,22	55	21	76	1 390
R72	186322	513 827	7 436 262	52,74	1,12	40	27	67	674
R73	186323	513 826	7 436 358	53,30	1,55	68	15	83	927
R74	186324	513 844	7 436 424	49,10	3,68	161	30	191	932
R75	186325	513 810	7 436 488	46,59	3,86	182	31	213	927
R76	186326	514 193	7 436 941	51,90	1,26	172	22	194	1 690
R77	186327	514 109	7 436 827	53,16	1,12	23	20	43	1 280
R78	186328	514 086	7 436 734	53,02	0,73	100	26	125	1 080
R79	186329	513 891	7 437 029	49,80	2,21	116	70	186	985
R80	186330	513 597	7 437 323	51,34	1,67	108	29	137	749
R81	186331	513 576	7 437 360	49,80	3,60	131	52	183	763
R82	186332	513 501	7 437 299	40,29	1,74	6 370	165	6 535	682
R83	186333	513 664	7 437 383	46,87	2,45	282	45	327	921
R84	186334	513 764	7 437 479	52,32	1,79	91	34	125	1 220
R85	186335	513 875	7 437 549	52,18	2,14	84	29	113	957
R86	186336	513 934	7 437 626	54,70	0,76	243	62	305	1 540
R87	186337	513 948	7 437 563	45,61	3,75	185	69	254	1 080
R88	<u>186</u> 338	513 927	7 437 471	<u>53</u> ,30	1 <u>,</u> 13	211	28	239	<u>1</u> 370
Gjennomsni	tt:			48,59	2,46	528	48	576	1 070
Median:				50,15	2,21	114	30	145	1 080

· NGU ·

Norges geologiske undersøkelse Postboks 6315, Slüppen 7491 Trondheim, Norge

Besøksadresse Leiv Eirikssons vei 39 7040 Trondheim

Telefon 73 90 40 00 E-post ngu@ngu.no Nettside www.ngu.no