NGU Report 2010.018
Results of borehole logging in well LYB CO2, Dh4 of 2009, Longyearbyen, Svalbard

Report no.: 2010.018		ISSN 0800-3416	Grading: Open	
Title: Results of borehole logging in well LYB CO2, Dh4 of 2009, Longyearbyen, Svalbard				
Authors: Harald Elvebakk			Client: UNIS	
County: Svalbard			Commune: Longyearbyen	
Map-sheet name (M=1:250.000)			Map-sheet no. and -name ($\mathrm{M}=1: 50.000$)	
Deposit name and grid-reference:LYB CO2 Dh4-2009UTM 33X, E518889 N8681108			Number of pages: $35 \quad$ Price (NOK): 210.-Map enclosures:	
$\begin{array}{\|l} \hline \text { Fieldwork carried out: } \\ 10.10 .09-12.10 .09 \\ 02.12 .09 \end{array}$	$\begin{array}{\|c\|} \hline \text { Date of report: } \\ 11.03 .2010 \end{array}$		Project no.: 322300	Person responsible: Jan S. Rouming

Summary:

NGU has carried out borehole logging in well LYB CO2 Dh4, in Adventdalen 5 km outside Longyearbyen. The well was drilled to locate deep sandstone formations that may be used to store CO_{2}. The project "Longyearbyen CO_{2} Lab" of UNIS and partners, will use the test site as laboratory for injection, storing and monitoring CO_{2} in the underground. The well was drilled full coring telescope operation to 970 m and was successful in that it cored Late Triassic sandstones that also show injectivity.

Logging parameters were temperature, fluid conductivity, natural gamma, rock resistivity, seismic velocity, caliper, relative density and borehole deviation. The well was also inspected by acoustic televiewer to map fractures. Because of a cased wellbore and the small borehole diameter in the deepest part, the entire borehole could not be logged.

The results show good correlation between the geophysical logs and the lithological units. Sandstones are indicated with low gamma radiation and increasing seismic velocity and apparent resistivity. Acoustic televiewer interpretation shows that some of the sandstones are highly fractured, which is confirmed by lowered seismic velocity and resistivity. Cap rock silt- and mudstones are fractured but the fractures do not influence strongly on the seismic velocity and resistivity log. In sum, this might indicate that the fractures in the sandy layers are open and water filled, whereas fractured siltstone is tight.

Keywords: Geophysics	Borehole logging	Resistivity
Seismic velocity	Temperature	Fluid conductivity
Natural Gamma	Deviation	Density
Acoustic Televiewer		Scientific Report

CONTENTS

1. INTRODUCTION 5
2. BOREHOLE LOCATION AND LOGGING PERFORMANCE 6
3. LOGGING PARAMETERS 7
3.1 Temperature 7
3.2 Conductivity 7
3.3 Natural Gamma 7
3.4 Resistivity 8
3.5 Seismic velocity 8
3.6 Caliper 8
3.7 Density (qualitative measurements) 8
3.8 Deviation 8
3.9 Acoustic televiewer 9
4. RESULTS 9
4.1 Dh4- $\mathrm{CO}_{2}-09$, P- and S- velocity, Natural Gamma, Resistivity, Thermal gradient, Density andCaliper.10
4.2 Acoustic televiewer 16
4.2.1 Fracture stereogram 16
4.2.2 Fracture histograms 17
4.3 Temperature and fluid conductivity 20
4.4 Deviation 24
5. CONCLUTION 25
6. REFERENCES 25
FIGURES
Figure 1. Borehole location in Adventdalen. The blue tower hosts the drill rig. 6
Figure 2. Dh4-CO2-09. P- and S-velocity, natural gamma, resistivity, thermal gradient, caliper, qualitative density 12
Figure 3. Dh4-CO2-09. P- and S-velocity, natural gamma, resistivity, thermal gradient, caliper, qualitative density. A stratigraphic log is shown to the right. 13
Figure 4. Dh4-CO2-09. P- and S-velocity, natural gamma, resistivity, thermal gradient, caliper, qualitative density 14
Figure 5. Dh4-CO CO_{2}-09. P- and S-velocity, natural gamma, resistivity, thermal gradient, caliper, qualitative density and simplified lithological interpretation log 15
Figure 6. Acoustic image of section $620-624 \mathrm{~m}$ in Dh4 showing horizontal fractures 16
Travel-time image (left) and amplitude image (right). 16
Figure 7. Fracture stereogram of indicated fractures in Dh4-CO2, showing contoured poles to surfaces (dots), and four identified fracture sets. 17
Figure 8. Fracture frequency histogram of fractures seen in televiewer in Dh4-CO2. VJC 18
(Volume Joint Count) is the total fracture frequency from all fracture sets. 18
Figure 9. Seismic velocity, gamma, resistivity, fracture frequency and caliper, Dh4-CO 19
Figure10. Temperature and fluid conductivity in Dh4-CO2-09. Blue lines are data from 10.10.09, the red lines from 02.12.09 20
Figure 11. Temperature and thermal gradients in Dh4-CO2-09 measured 22
02.12.09 22
Figure 12. Temperature, thermal gradient, natural gamma and lithology in Dh4-CO2 23
Figure 13. Deviation plots Dh4-CO2-09, E- and N -components (left) and direction (right). 24

TABLES

Tabel 1. Well data Dh4-CO2-09.. 5

APPENDIX

Appendix 1 : Tabulated data of indicated fractures in $\mathrm{Dh} 4-\mathrm{CO}_{2} \ldots \ldots$
Appendix 2 : Table of mean fracture frequency in defined zones................................. 28
Appendix 3 : Borehole deviation data, inclination and azimuth...................................... 29

1. INTRODUCTION

This report is a continuation of NGU Report 2008.054 (covering wells Dh1 and Dh2) and describes the result of the geophysical logging in well No. 4 in the Longyearbyen CO_{2} lab project which was stated in 2007.

In Longyearbyen, Svalbard, all electrical energy is produced by a coal combusting power plant. The power plant is emitting about 80000 tons of CO_{2} per year. A research programme initiated by the University Centre in Svalbard (UNIS) has a vision to make Longyearbyen free of man-made CO_{2}. The Longyearbyen $\mathrm{CO}_{2} \mathrm{Lab}$ main goal is to study the injection, storing and monitoring the CO2 in a suitable aquifer. UNIS also wants to develop high level educational courses as part of the project.

The first phase in the project has been to identify a deep sandstone formation below the surface near Longyearbyen which is suitable for injection and storing of CO_{2}. Two wells were drilled in 2007 close to the airport. Significant problems caused by a 25 m thick fault zone of highly fractured shale at 450 m depth caused stability problems, and in the end stopped the drilling at ca. 870 m depth in well Dh2- $\mathrm{CO}_{2}-07$. The well failed to reach the main reservoir that is prognosed to be in Late Triassic sandstone. Previous to this well, a well Dh1- $\mathrm{CO}_{2}-07$ was drilled to 518 m depth. Also this well failed for the same reason. Both wells were logged by NGU down to the fault zone at 440 m depth (Elvebakk 2008).

A third well was drilled in August-October 2008, a few kilometers into the Advent Valley, approximately 5 km from Longyearbyen. The well reached 403 m coring the cap rocks. Due to the stability problems in the fault zone the drilling failed to get further down.

In August - December 2009 a well number 4 was drilled in Adventdalen 45 m from Dh 3. After significant upgrading of drilling equipment, and by reducing well bore diameter at deeper levels and cementing successive casings, the well reached 970 m . The deepest 100 m were drilled using a 46 mm drill rod. This small dimension reduced the accessibility in the well for the logging tools.

The borehole logging was performed in two parts (periods). The upper 440 m was not fully logged because of the cemented casing in this part of the well. The logging parameters were temperature, fluid conductivity, natural gamma, rock resistivity, seismic velocity, caliper, relative density and borehole deviation. Acoustic telewiever (HIRAT, High Resolution Acoustic Televiewer) was run in one part of the borehole, $440 \mathrm{~m}-700 \mathrm{~m}$.

The logging was carried out 10.10.09-12.10.09 and 02.12 .09 by Harald Elvebakk, NGU, assisted by the drilling crew from LNS Spitsbergen.

2. BOREHOLE LOCATION AND LOGGING PERFORMANCE.

The Dh4- CO_{2} well is located in Adventdalen, close to the former Auroral Observatory approximately 5 km from Longyearbyen, see figure 1.Well data are shown in table 1.

Figure 1. Borehole location in Adventdalen. The blue tower hosts the drill rig.

Tabel 1. Well data Dh4-CO2-09

Well	Drilled depth(m)	Logging depth (\mathbf{m})	Drilling finished	Logging date	UTM-East 33X	UTM-North 33X
LYB CO2 Dh4-2009	790	$440-790$	10.10 .09	$10-12.10 .09$	518889	8681108
LYB CO2 Dh4-2009	$870-970$	$790-915$	27.11 .09	02.12 .2009	518889	8681108

Four different well diameters were used. In the upper 440 m a HQ core bit (OD 96 mm) was used. The HQ rod was cemented down to this depth which reduced the logging parameters to only temperature and gamma radiation. From 440 m to 790.5 m the NQ (76 mm) rod was used. In this section the logging was performed in the first logging period, 10.10.-12.10.09. During the logging a rock fall at about 710 m depth blocked the bore hole thereby cancelling caliper, density and HIRAT data between 705 and 790 m .

Drilling from 790 m was performed by the BQ rod (60 mm).This drill string locked at 870 m and could not be moved. After discussions it was decided to continue the drilling with the 46 mm string from 870 m , leaving the BQ rod in the borehole . Due to geological information and two interesting water injection tests, the drilling was stopped at 970 m . Logging in the deepest section (46 mm), $870-970 \mathrm{~m}$, could only be done with the thinnest probes,
temperature/gamma/conductivity and caliper. Nevertheless the temperature probe stopped at about 915 m in the narrow bore hole. This probe was run from the surface. Caliper was run from 870 to 915 m . The density probe could have been run, but the risk for losing the probe with a radioactive Cs gamma source in the bore hole was considered too high.

3. LOGGING PARAMETERS

The logging parameters monitored by various tools were temperature, fluid conductivity, natural gamma, rock resistivity, seismic velocity, caliper, relative density and borehole deviation. The logging equipment is produced by Robertson Geologging Ltd.
(http://www.geologging.com/).
The caliper and density probe belonged to SNSK. Short descriptions for the other probes (NGU) can be found on NGU's web site: http://www.ngu.no/no/hm/Norges-geologi/Geofysikk/Borehullsgeofysikk/

Detailed exploration of the tables in the Appendix can also be found on this web site.

3.1 Temperature

Temperature measurements should ideally be performed some time after the drilling stops, since the energy from the drilling process (hot drilling fluid, rock crushing, and friction) will increase the temperature in the borehole. Stabilizing the temperature may take several weeks depending on the drilling method and borehole diameter. Commonly the upper $25-30 \mathrm{~m}$ of a borehole will be influenced by seasonal variations in the near surface temperature. From the temperature log the temperature gradient $\left({ }^{\circ} \mathrm{C} / \mathrm{km}\right)$ can be calculated. Local changes in the gradient may indicate fractures and related inflow (or outflow) of water.

3.2 Conductivity

The fluid conductivity ($\mu \mathrm{S} / \mathrm{cm}$) depends on the fluid salinity. The conductivity measurements can identify zones of water in-flow/out-flow and locate zones of different water quality. The measured values are temperature compensated to a reference temperature of $25^{\circ} \mathrm{C}$. In the CO_{2} boreholes the conductivity is very high, caused both by the saline drilling water and by saline groundwater.

3.3 Natural Gamma

The natural gamma $\log (\mathrm{cps})$ is useful for geological mapping along walls of a borehole. All rocks contain small quantities of radioactive material, in that certain minerals contain trace amounts of Uranium and Thorium. Potassium-bearing minerals (most common) will include traces of a radioactive isotope of Potassium $\left(\mathrm{K}_{40}\right)$. Natural gamma measurements are useful because the radioactive elements are concentrated in certain rock types, e.g. clay, shale and granite, and depleted in others, e.g. sandstone and coal. The unit (cps) is in API standard units which mean that data can be compared to other measurements performed with the same standard.

3.4 Resistivity

Resistivity logging in boreholes is extensively used in hydrocarbon exploration of sedimentary rocks both to identify lithological boundaries and to estimate the rock porosity. The resistivity depends on porosity and fractures (water content), content of electronic conductive minerals such as sulphides, oxides and graphite and clay. Saline pore water will influence on the apparent resistivity. The resistivity is measured using two configurations, Short Normal (SN) and Long Normal (LN). The resistivity data are processed by using a program that corrects borehole resistivity logging data for the influence of the borehole liquid, borehole diameter and probe size (Thunehed \& Olsson 2004). The porosity is calculated using the measured resistivity and Archie's law (Archie 1942). Archie's law was found to be correct for porous sandstones with uniform grain size. If other parameters than the porosity (e.g. electronic conductive minerals, fractures) influence on the resistivity, the calculated porosity using Archie’s law will be wrong.

3.5 Seismic velocity

The sonic probe has one transmitter and two receivers separated by 30.4 cm , that records the full sonic wave-train at both receivers simultaneously and also the velocity of the first arrival. Both P-velocity (compression) and S-velocity (shear wave) are calculated every 20 cm . Data are filtered using a running average filter over 0.8 m . The first arrival of the P -wave is quite easy to pick while the arrival of the S-wave is more indistinct. P-velocity (formation velocity) is used for lithological identification and fracture mapping. Data processing is done by using software from ALT (ALT 2006).

3.6 Caliper

The three-arm caliper probe (from SNSK) provides a single continuous log of borehole diameter. The applications of the caliper measurements are location of cracks, fissures, caving, faulting and casing breaks. It is also used for correction of other logs affected by borehole diameter (resistivity, density).

3.7 Density (qualitative measurements)

The trisonde density probe (from SNSK) is a convenient alternative to the standard RG sidewall density probe whenever borehole diameter is restricted and qualitative density measurements are sufficient. The trisonde log can be used for lithological identification, bed thickness and boundary location based on relative changes in the density.

3.8 Deviation

The RG verticality probe provides accurate, continuous measurements of borehole inclination and direction. The probe includes a triaxial magnetometer for measuring the borehole orientation (azimuth accuracy $+/-1^{\circ}$) and three accelerometers to measure inclination (accuracy $+/-0.5^{\circ}$). From this the East and North deviation components are calculated. The azimuth measurements will be wrong inside the casing because of the magnetic properties of the casing.

3.9 Acoustic televiewer

The HIRAT (also named BHTV, Bore Hole TeleViewer) sonde uses a fixed acoustic transducer and rotating mirror system to acquire 2-way travel-time and amplitude of the acoustic signal reflected back to the transducer from a spiral trajectory on the borehole wall. From this an image of the borehole wall are constructed using both the travel-time and amplitude signal. Pixel size at the borehole wall is approximately $1 \times 1 \mathrm{~mm}$ using the highest resolution (360 shots per revolution).

Fracture study through processing aims to identify geometric sets of fractures/veins, and then estimate variations in mean dip and frequency within the sets and lines of intersection among the sets, with depth. In sedimentary rocks, the structural interpretation aims to extract formation dip and to identify geological structures such as unconformities, folds and faults, from the distribution and orientation of dips assigned to bedding.

Digitalizing the observed features on the well bore image creates strike and dip of identified structures which can be presented in fracture stereograms, rose diagrams, fracture frequency histograms, and thickness calculations of beds, bands and fractures. The deviation of the borehole is also calculated.

4. RESULTS

Logging was performed in two periods, 10.-12.10.2009 and 2.12.2009. All parameters were logged during the first period down to 790 m , for some tools to 700 m . Only temperature, fluid conductivity and natural gamma were logged from the surface due to the cased well down to 440 m . P-velocity, S-velocity and Resistivity were logged from $440 \mathrm{~m}-790 \mathrm{~m}$, Caliper and Density from $440 \mathrm{~m}-705 \mathrm{~m}$. A rock fall blocked the bore hole at 710 m before the latter two logs were run.

The calculated porosity is very high. The porosity is calculated using the resistivity, see chapter 3.4. The measured resistivity is very low, especially in the claystones. Clay minerals contribute to the measured electric conductivity and Archie*s law fails. This results in a very high porosity which obviously is wrong, and the porosity data are not included in the logs.

The logs are presented as continuous plots including several parameters:

- P- and S- velocity, Natural Gamma, Resistivity, Thermal gradient, Density and Caliper.
- Temperature, thermal gradients (20 m and 100 m depth intervals) for both periods.
- Temperature, fluid conductivity,
- Deviation, North- and East projection and horizontal projection (direction)
- Acoustic televiewer, fracture stereogram and fracture frequency histograms.

The sonic data were processed using the WellCad software from ALT (ALT 2006). The resistivity data were processed by using a program that corrects borehole resistivity logging data for the influence of the borehole liquid conductivity, borehole diameter and probe size. (Thunehed \& Olsson 2004).

The thermal gradients are calculated using running least-squares gradients of a straight line with depth intervals of 20 m and 100 m . In such analysis the 20 m interval is more sensitive to local variations in the temperature.

4.1 Dh4- $\mathrm{CO}_{2}-09$, P- and S- velocity, Natural Gamma, Resistivity, Thermal gradient, Density and Caliper.

The well reached the main reservoir (sandstone) and the total depth of the well is 970 m .
Figure 2 shows the logs of P-velocity, S-velocity, natural gamma, resistivity, thermal gradient, caliper and qualitative density for the section $440 \mathrm{~m}-790 \mathrm{~m}$. Natural gamma and temperature are logged from the surface to 900 m . The data quality is quite good for all logs. The gamma radiation data are corrected due to the casing which will attenuate some part of the radiation. The temperature is measured 5 days after ended drilling and the influence from drilling operation is expected to be small, see later chapter 4.3. Different stratigraphic units (formations) can be recognized on the gamma log which covers almost the complete bore hole. This is shown in figure 3 which includes a stratigraphic log (Atle Mørk, pers. com.).

Figure 4 shows logs below 440 m depth. Figure 5 shows the same logs now including the main lithological units from the sediment logs (Atle Mørk and UNIS pers. com.).

The P-velocity log is indicating P-velocities of $3000-4500 \mathrm{~m} / \mathrm{s}$. Average velocities for the main units are: sandstone $-4200 \mathrm{~m} / \mathrm{s}$ and silt/mudstone $-3350 \mathrm{~m} / \mathrm{s}$. This is in the range of normal velocities for sandstone, silt-and mudstone.

Normal values for sandstones is in the range of some 10 ohmm to several 10000 ohmm (Schön 2004). Measured values are $20-30$ ohmm in the siltstone and 50-100 ohmm in the sandstone. This is lower than the resistivity values in Dh1 and Dh2 and can be explained by the very high conductivity in the water. In Dh1 and Dh2 the fluid conductivity was about $10000 \mu \mathrm{~S} / \mathrm{cm}$, while the conductivity in Dh4 was $20000-50000 \mu \mathrm{~S} / \mathrm{cm}$. Another reason could be that the logged section in Dh4 is deeper in the stratigraphy containing rocks with other properties.

The resistivity data are corrected due to the borehole water conductivity, which is saline water. However, in this case the pore water is most likely saline groundwater and this will also have an influence on the measured values. By using Archie's law the formation resistivity ρ_{o} can be calculated from the porosity, Φ, pore water resistivity, ρ_{w} and cementation exponent, m. (Archie 1942).

$$
\rho_{\mathrm{o}} / \rho_{\mathrm{w}}=1 / \Phi^{\mathrm{m}}
$$

If we assume a porosity of 10%, pore water conductivity of $25000 \mu \mathrm{~S} / \mathrm{cm}$ and m equal to 2 , the calculated formation resistivity will be 40 ohmm. This fits well with the logged values, 20 - 100 ohmm. The important issue here, however, is how the resistivity varies due to the changing lithology.

The gamma log indicates changes in the lithology. The caliper log indicates fractures, but can also be related to small changes in the borehole diameter caused by variations in the rock hardness. In this way the formation thickness is indicated. For the density log, although this tool gives a qualitative density measurement, the layer thicknesses are indicated. The density is also influenced by changes in borehole diameter.

In the following, some examples of log interpretations are described (units are marked with different colors in figure 5).

440 - 545 m : Layers of siltstone with small amount of sand (UNIS litholog). The P-velocity is very low down to 490 m depth, $3000 \mathrm{~m} / \mathrm{s}$, likewise the S-velocity, $1600-2000 \mathrm{~m} / \mathrm{s}$. The resistivity is low, 25 ohmm and the gamma radiation is quite constant $130-140 \mathrm{cps}$. A slight increase in P-velocity and resistivity from 500 m is probably caused by an increase in the amount of sand. The caliper \log shows an increased diameter from 535 to 440 m . The fracture frequency is high, see later (acoustic televiewer). The density log shows an increase in cps in the same section. This increase is probably caused by the increased diameter. At $535-545 \mathrm{~m}$ depth there is a distinct increase in the gamma radiation and the resistivity while the Pvelocity decreases. This is uniform siltstone (from UNIS litholog) and the changes in these parameters are difficult to explain.

545 - 590 m : Sandy mudstone/siltstone. The amount of sand is 30-50 \% (UNIS litholog). Pand S-velocity increase to $4000-4200 \mathrm{~m} / \mathrm{s}$ and $2300-2600 \mathrm{~m} / \mathrm{s}$. The resistivity is $50-70$ ohmm except for low values locally at 575 m depth. The gamma radiation decreases due to the increased amount of sand. The borehole diameter is stable except a small increase at 565575 m depth probably caused by fractures.

590-670 m : Siltstone. The P- and S-velocity decreases in this unit which is normal. The resistivity increases to $75-100$ ohmm at $610-630 \mathrm{~m}$ depth. In the same depth interval the gamma radiation increases to 175 cps and the relative density (in cps) has a slight increase (slight decrease in real density). The higher resistivity should indicate more sand, but the higher gamma radiation and lower P-velocity point in the opposite direction. This section of the borehole is highly fractured which normally means lowered resistivity. Therefore it's difficult to explain the high resistivity and high gamma. The strong decrease in resistivity from 630 m depth is caused by highly fractured rock which is confirmed by the caliper log and acoustic televiewer.
$670-680 \mathrm{~m}$: Sandstone and conglomerate. This section belongs to the Wilhelmøya Subgroup in De Geerdalen Formation. A conglomerate, 675-678 m, is indicated by low seismic velocity, low gamma and low resistivity (SN).

680 - 765 m : Alternating layers of sandstone, siltstone and silt-mudstone with no special events on the logs. A very high value of P - and S -velocity at 687 m is probably caused by a thin layer of massive sandstone.
$765-\mathbf{8 0 0} \mathbf{~ m}$: Sandstone indicated by strong increase in the resistivity, this is massive sandstone. P-velocity is $4200-4400 \mathrm{~m} / \mathrm{s}$.

Below 800 m : Below 800 m the only logged parameters are gamma radiation, temperature and fluid conductivity. Variations in the gamma radiation indicate alternating layers of sandstone/siltstone.

Adventdalen, Dh4-CO2-09

Adventdalen, Dh4-CO2-09

Figure 3. Dh4-CO2-09. P- and S-velocity, natural gamma, resistivity, thermal gradient, caliper, qualitative density. A stratigraphic log is shown to the right.

Adventdalen, Dh4-CO2-09

Adventdalen, Dh4-CO2-09

Figure 5. Dh4-CO CO_{2}-09. P- and S-velocity, natural gamma, resistivity, thermal gradient, caliper, qualitative density and simplified lithological interpretation log.

4.2 Acoustic televiewer

Acoustic televiewer was performed in Dh4 from 440 m to 705 m . The recorded image was of relatively poor quality because the probe was not well centralized in the borehole. This is so because the borehole diameter was too small for using the RG centralizer springs. However, the data could be interpreted with satisfying interpretation of fractures, and statistics of identified fractures have been worked out. Figure 6 shows an acoustic image of a section in Dh4, from 620-624 m depth. Most of the fractures in Dh4 are horizontal and parallel to the foliation. Detailed information about all fractures is listed in Appendix 1 and 2.

Figure 6. Acoustic image of section $620-624 m$ in Dh4 showing horizontal fractures. Travel-time image (left) and amplitude image (right).

4.2.1 Fracture stereogram

Figure 7 shows the fracture stereogram for all identified fractures in borehole Dh4-CO2. The blue group is the overall dominating set of fractures which basically is horizontal. Of 284 fractures, 258 belong to this set. There are three other sets with moderately dipping fractures, WNW - ESE and NE - SW striking. Mean strike and dip of all defined sets, as seen in the stereogram, are listed in the table in figure 7.

Figure 7. Fracture stereogram of indicated fractures in Dh4-CO2, showing contoured poles to surfaces (dots), and four identified fracture sets.

4.2.2 Fracture histograms

Different fracture sets are defined in the stereogram by different colors, see figure 7. The same sets and colors can be identified in the fracture histograms and on individual fractures.

Figure 8 shows the fracture frequency histograms for $\mathrm{Dh} 4-\mathrm{CO}_{2}, 440 \mathrm{~m}-705 \mathrm{~m}$. As seen in the stereogram, the blue group of fractures is dominating. It is obvious that the most fractured part of the borehole is $600-650 \mathrm{~m}$. This is in the siltstone ($590-670 \mathrm{~m}$). Maximum fracture frequency is 6 fractures/meter. Other highly fractured sections in the borehole are: 455-475 m (siltstone), $498-504 \mathrm{~m}$ (siltstone), $535-545 \mathrm{~m}$ (siltstone), $658-664 \mathrm{~m}$ (siltstone) and $682-708 \mathrm{~m}$ (sandstone and siltstone). VJC (volume joint count) is the total fracture frequency from all fracture sets (colors).

Figure 9 shows seismic velocity, gamma, resistivity and caliper together with fracture frequency histograms for the horizontal fractures. Some of the fractured sections in the borehole fit well with lowered seismic velocity and lowered resistivity (yellow marking) while some does not. Especially this can be seen in the lower part of the logged borehole, below 650 m depth in the sandstone and alternating sandstone/siltstone. In the most fractured part, $600-650 \mathrm{~m}$ depth and in the upper part of the siltstone, the fractures do not seem to influence on the seismic velocity and resistivity in the same way. This could indicate that the fractures in the sandy layers are open and water filled. On the contrary this might also indicate that the fractured siltstone is tight.

Figure 8. Fracture frequency histogram of fractures seen in televiewer in Dh4-CO2. VJC (Volume Joint Count) is the total fracture frequency from all fracture sets.

Figure 9. Seismic velocity, gamma, resistivity, fracture frequency and caliper, $\mathrm{Dh} 4-\mathrm{CO}_{2}$.

4.3 Temperature and fluid conductivity.

Temperature and fluid conductivity were measured two times, 10.10 .09 (790 m) and 02.12 .09 (900 m). The water table was moved down 55 m from the first logging of 180 m to 235 m depth when the second logging took place. The results from both logs are shown in figure 10. The temperature at 900 m depth is $31.8^{\circ} \mathrm{C}$. The two temperature logs are quite similar below the water table, $0.7^{\circ} \mathrm{C}$ higher on the first log which was done one day after ended drilling. The last $\log (02.12 .09)$ was performed 5 days after ended drilling. Data from logging in air is inaccurate for this type of measurements. Note that the fluid conductivity is extremely high due to the use of salt in the drilling fluid.

Figure10. Temperature and fluid conductivity in Dh4-CO2-09. Blue lines are data from 10.10.09, the red lines from 02.12.09.

Temperature logging should be performed when the temperature in the well is stabilized after ended drilling. The time after drilling depends on drilling method, borehole diameter and drilling fluid temperature. Determination of temperature perturbation in oil wells after mud circulation can be done (Middelton 1982). Christophe Pascal, NGU, calculated the temperature perturbation in a 60 mm borehole 60 hours after mud circulation using a temperature difference of $10-40^{\circ} \mathrm{C}$ between the drilling fluid temperature and the formation temperature. The results suggest that the formation temperature should not be much affected, $0.05-0.2{ }^{\circ} \mathrm{C}$ (Pascal personal information).

Figure 11 shows the thermal gradient in Dh4. The thermal gradients are calculated using running least-squares gradients of a straight line with depth intervals of 20 m and 100 m . The 20 m interval is more sensitive to local variations in the temperature. The thermal gradient is close to $50^{\circ} \mathrm{C} / \mathrm{km}$ in the mud- and siltstone down to 650 m depth. In the sandstone the gradient is lower, $35-40^{\circ} \mathrm{C} / \mathrm{km}$, due to the higher thermal conductivity in sandstone.

It is interesting to notice the decrease in thermal gradient at 545-590 m depth due to the increasing amount of sand in this section. In the underlying siltstone at $590-670 \mathrm{~m}$, the thermal grading increases probably because of the lower thermal conductivity. The big decrease in the gradient at $760-785 \mathrm{~m}$ is caused by a layer of massive sandstone with higher thermal conductivity. Figure 12 shows the temperature, thermal gradient, gamma log and a simplified lithological log and clearly shows the correlation between the thermal gradient and the lithological units with different thermal conductivities. Also note the correlation to the gamma log.

Geothermal modeling shows that the thermal gradient is very sensitive to changes in the thermal conductivity (C. Pascal, pers. com.) and roughly the thermal conductivity in sandstone is twice the conductivity in mud-/siltstone. This could be confirmed by thermal conductivity measurements on cores from Dh 4. In general the thermal gradient at Svalbard is very high compared to thermal gradients measured onshore Norway, but is rather common for stable sedimentary basins.

Local changes in the temperature may also be caused by inflow of hot/cold water, but such changes are more abrupt than those seen in Dh4-CO2. Inflow/outflow and vertical water flow can be measured with an impeller flowmeter. The borehole should not be cased.

Adventdalen Dh4-CO2-09

Figure 11. Temperature and thermal gradients in Dh4-CO ${ }_{2}$-09 measured 02.12.09.

Adventdalen Dh4-CO2-09

Figure 12. Temperature, thermal gradient, natural gamma and lithology in Dh4-CO2.

4.4 Deviation

Deviation was measured from the surface to 712 m depth. Deviation components are shown in figure 13, confirming that the deviation from vertical is very small. At a depth of 712 m the East-component is 0.6 m and the North-component 3.6 m . The deviation from vertical of the borehole is towards the South. In the upper 440 m the azimuth is wrong due to the influence of magnetic material in the casing. Deviation data are listed in Appendix 3. Explanation of the data tables is given on the NGU web site.

Adventdalen Dh4-CO2-09
Deviation
North dev. comp.
East dev. comp. (m)

Figure 13. Deviation plots Dh4-CO2-09, E- and N -components (left) and direction (right).

5. CONCLUTION

NGU has carried out borehole logging in the well $\mathrm{LYB} \mathrm{CO}_{2} \mathrm{Dh} 4$, in Adventdalen 5 km outside Longyearbyen. The well was drilled to locate deep sandstone formations that may be used to store CO_{2}. UNIS and partners in the Longyearbyen CO_{2} Lab project, will use the test site as laboratory for injection, storing and monitoring CO_{2} in the underground. The well was drilled to 970 m and found injective Late Triassic sandstone.

Logging parameters were temperature, fluid conductivity, natural gamma, rock resistivity, seismic velocity, caliper, relative density and borehole deviation. The well was also inspected by acoustic televiewer to map fractures. Because of casing in the well and small borehole diameter in the deepest part, the entire borehole could not be logged.

The results show good correlation between the geophysical logs and the lithological units. Sandstones are indicated with low gamma radiation and increasing seismic velocity and apparent resistivity. Acoustic televiewer interpretation shows that some of the sandstones are highly fractured, which is confirmed by lowered seismic velocity and resistivity. Overlaying silt- and mudstones are more fractured but the fractures do not influence strongly on the seismic velocity and resistivity log.This indicates that the fractures in the sandy layers are open and water filled. This also indicates that the fractured siltstone is tight.

6. REFERENCES

Advanced Logic Technology, 2006: WellCAD, FWS processing, version 4.1.
Archie, G.E., 1942: The electrical resistivity \log as an aid in determining some reservoir characteristics. Petroleum Technology, 5, 1422-1430.

Elvebakk, H. 2008: Results of borehole logging in CO_{2} wells, $\mathrm{Dh} 1-\mathrm{CO}_{2}-07$ and $\mathrm{Dh} 2-\mathrm{CO}_{2}-07$, Longyearbyen, Svalbard. NGU Report 2008.054.

Middelton, M.F. 1982: Bottom hole temperature stabilization with continued circulation of drilling mud. Geophysics, vol. 47. No 12. December 1982, p. 1716 - 1723.

Schön, J.H. 2004: Physical Properities of Rocks, Fundamental and Principles of Petrophysics. Volume 18, Elsevier.

Thunhead, H. \& Olsson, O. 2004: Borehole corrections for a thick resistivity probe. JEEG, December 2004, Volume 9, Issue 4, pp. 217 - 224.

	Depth Azimuth		Upper Lower Well Depth Depth Diam	Well deviation Azimuth Dev		Thickness
1	706.514 N050	14.3	706.504706 .5240 .08	171.73	0.58	0.0576
2	706.456 N350	0.7	706.456706 .4560 .08	170.5	0.66	\bigcirc
3	704.865 N169	7.3	704.86704 .8710 .08	187.62	0.7	\bigcirc
4	704.743 N107	9.7	704.736704 .750 .08	165.2	0.78	\bigcirc
5	704.661 N349	0.6	704.661704 .6610 .08	169.4	0.58	0
6	704.126 N043	8.6	704.12704 .1310 .08	173.89	0.66	0.0404
7	704.085 N014	6.6	704.081704 .0890 .08	197.87	0.55	\bigcirc
8	701.326 N167	13.8	701.316701 .3370 .08	179.12	0.72	0.1051
9	701.219 N218	10.9	701.211701 .2270 .08	172.97	0.64	\bigcirc
10	698.191 N357	0.7	698.191698 .1910 .08	177	0.7	\bigcirc
11	697.325 N295	11.5	697.317697 .3320 .08	179.95	0.88	\bigcirc
12	697.218 N231	11.2	697.21697 .2260 .08	190.37	0.71	\bigcirc
13	697.174 N273	5.9	697.17697 .1780 .08	190.72	0.59	\bigcirc
14	696.464 N275	5.2	696.46696 .4670 .08	184.34	0.7	\bigcirc
15	696.081 N000	15.4	696.07696 .0920 .08	189	0.63	0
16	695.831 N008	0.6	695.831695 .8310 .08	188.2	0.6	0
17	693.749 N184	4.4	693.746693 .7530 .08	201	0.51	\bigcirc
18	692.17 N022	0.5	$692.17692 .17 \quad 0.08$	202	0.46	\bigcirc
19	691.778 N202	3.8	691.775691 .7810 .08	201	0.45	\bigcirc
20	690.633 N285	4.3	690.629690 .6360 .08	210.51	0.43	0
21	689.161 N268	6	689.157689 .1660 .08	206.68	0.48	\bigcirc
22	689.089 N222	4.9	689.085689 .0920 .08	206.89	0.41	\bigcirc
23	689.044 N149	8.9	689.037689 .050 .08	204	0.46	0.0359
24	689.007 N148	12.6	688.998689 .0160 .08	206.2	0.46	0
25	688.412 N241	15.5	688.401688 .4230 .08	203	0.46	0
26	685.112 N218	9.7	685.105685 .1190 .08	204.32	0.52	0
27	684.945 N025	0.5	684.945684 .9450 .08	205	0.52	0
28	684.365 N018	0.5	684.365684 .3650 .08	198	0.51	\bigcirc
29	684.015 N027	0.6	684.015684 .0150 .08	207	0.55	\bigcirc
30	683.957 N042	4.3	683.955683 .960 .08	200	0.53	\bigcirc
31	682.359 N217	45.4	$682.317682 .4 \quad 0.08$	200.35	0.58	0
32	679.985 N017	0.6	679.985679 .9850 .08	197	0.59	\bigcirc
33	679.367 N057	11.6	679.359679 .3750 .08	197	0.59	0
34	677.336 N342	33.5	$677.31 \quad 677.3620 .08$	193	0.64	0.0734
35	677.248 N325	33.7	677.222677 .2740 .08	197.72	0.59	0
36	670.892 N219	47.7	670.847670 .9370 .08	200.09	0.68	\bigcirc
37	663.837 N334	5.4	663.834663 .8410 .08	218.26	0.39	\bigcirc
38	663.534 N199	8.9	663.527663 .540 .08	209	0.45	\bigcirc
39	663.492 N114	11.6	663.484663 .5010 .08	222	0.5	0
40	662.567 N178	11.7	662.559662 .5760 .08	242.04	0.34	\bigcirc
41	662.522 N164	10.9	662.515662 .530 .08	248	0.32	\bigcirc
42	661.522 N235	4.3	661.519661 .5250 .08	230.28	0.38	\bigcirc
43	659.993 N215	11	659.985660 .0010 .08	166.79	0.26	0.6721
44	659.299 N115	28.4	659.277659 .3210 .08	152.77	0.29	0
45	659.042 N198	17.6	659.029659 .0550 .08	149.54	0.26	\bigcirc
46	658.913 N211	30.3	658.889658 .9360 .08	148.73	0.27	\bigcirc
47	652.391 N215	47.3	652.348652 .4350 .08	146.93	0.4	\bigcirc
48	649.351 N356	23.2	649.334649 .3680 .08	128.61	0.46	0.1081
49	649.237 N015	14.2	649.227649 .2470 .08	139.21	0.41	\bigcirc
50	648.901 N243	43.7	648.863648 .9390 .08	143	0.45	0
51	648.824 N253	14.2	648.814648 .8340 .08	145.6	0.47	\bigcirc
52	648.73 N112	15.6	648.718648 .7410 .08	141.52	0.45	\bigcirc
53	648.65 N326	0.5	648.65648 .650 .08	145.5	0.47	0
54	648.29 N324	0.4	648.29648 .290 .08	144	0.42	\bigcirc
55	647.45 N317	0.4	$647.45 \quad 647.45 \quad 0.08$	137.5	0.4	\bigcirc
56	647.22 N325	0.4	647.22647 .220 .08	145.5	0.42	0
57	646.986 N265	17	646.974646 .9980 .08	144.9	0.37	0
58	646.47 N319	0.5	$646.47 \quad 646.47 \quad 0.08$	139.49	0.47	\bigcirc
59	645.774 N094	15.2	645.763645 .7850 .08	148.79	0.42	\bigcirc
60	645.469 N230	13.8	645.459645 .4790 .08	145.2	0.43	\bigcirc
61	645.376 N234	17.1	645.364645 .3890 .08	146	0.43	\bigcirc
62	644.848 N013	5.1	644.845644 .8520 .08	146.32	0.46	0
63	644.758 N002	4.8	644.755644 .7610 .08	146	0.46	0
64	644.532 N064	12.1	644.523644 .540 .08	144	0.45	0
65	643.638 N013	5.1	643.635643 .6410 .08	148	0.47	\bigcirc
66	643.205 N331	0.5	643.205643 .2050 .08	151.01	0.49	\bigcirc
67	643.043 N019	4.8	643.04643 .0460 .08	149.81	0.53	\bigcirc
68	642.905 N318	0.5	642.905642 .9050 .08	138	0.53	0
69	642.875 N319	0.5	642.875642 .8750 .08	139	0.5	0
70	642.656 N278	10.6	642.649642 .6630 .08	145.92	0.48	0

71	642.118 N300	12	642.11642 .1260 .08	141.47	0.61	0
72	642.067 N358	5.1	642.064642 .0710 .08	144	0.52	0
73	641.612 N196	3.9	641.609641 .6150 .08	146.1	0.41	0
74	641.56 N331	0.4	641.56 641.56 0.08	150.5	0.45	0
75	640.16 N334	0.5	640.16640 .160 .08	154	0.51	0
76	639.96 N332	0.5	$639.96 \quad 639.960 .08$	152	0.5	0
77	639.775 N331	0.5	639.775639 .7750 .08	151	0.5	0.0614
78	639.713 N268	11.9	639.705639 .7220 .08	153	0.49	0
79	639.625 N081	9.2	639.619639 .6320 .08	150.98	0.51	0
80	639.289 N048	7.3	639.284639 .2940 .08	150.44	0.53	0
81	639.225 N331	7.8	639.22639 .23 0.08	152	0.54	0
82	639.01 N332	0.5	639.01639 .010 .08	152	0.5	0
83	638.86 N047	7.2	638.855638 .8650 .08	153.54	0.5	0
84	638.512 N357	4.7	638.509638 .5150 .08	151.71	0.52	0
85	638.478 N049	10.2	638.471638 .4850 .08	152	0.53	0
86	637.858 N059	4	637.855637 .8610 .08	151.31	0.5	0
87	637.568 N092	13.9	637.557637 .5780 .08	145	0.54	0
88	637.515 N324	0.5	637.515637 .5150 .08	144.01	0.54	0
89	636.584 N007	9.6	636.577636 .590 .08	154.55	0.58	0
90	636.545 N283	56.1	636.486636 .6040 .08	162	0.57	0
91	635.712 N253	79.2	635.503635 .9220 .08	158	0.63	0.0172
92	635.614 N256	80.6	635.373635 .8550 .08	158.92	0.63	0
93	634.233 N057	4.8	634.23634 .2360 .08	156.29	0.62	0
94	633.513 N326	4.8	633.51633 .5160 .08	165	0.72	0
95	632.21 N346	0.7	$632.21 \quad 632.21 \quad 0.08$	166	0.72	0
96	630.693 N020	10.4	$630.686630 .7 \quad 0.08$	169	0.77	0
97	630.666 N022	6.6	630.662630 .67 0.08	169	0.77	0
98	629.69 N353	0.8	629.69629 .69 0.08	173	0.76	0
99	628.788 N123	10.7	628.78628 .7960 .08	176.27	0.75	0
100	628.672 N160	3.2	628.669628 .6750 .08	174	0.76	0.0972
101	628.575 N356	0.8	628.575628 .5750 .08	176	0.79	0
102	627.09 N002	0.8	627.09627 .090 .08	182.01	0.76	0
103	626.649 N292	9.7	626.642626 .6550 .08	178.64	0.72	0
104	626.203 N310	26.1	626.184626 .2220 .08	184.19	0.75	0.0865
105	626.111 N331	13.9	626.102626 .1210 .08	184	0.75	0
106	625.987 N187	12	625.978625 .9960 .08	185	0.74	0
107	625.957 N172	4	625.953625 .960 .08	184.83	0.75	0
108	625.904 N272	19.5	625.89625 .9180 .08	185	0.75	0
109	625.304 N240	4.5	625.3625 .3070 .08	186.15	0.75	0
110	624.31 N009	0.8	$624.31 \quad 624.31 \quad 0.08$	189	0.78	0
111	624.257 N318	5.1	624.253624 .260 .08	191.83	0.75	0
112	624.182 N188	3.6	624.179624 .1850 .08	190.31	0.76	0
113	623.673 N105	4.9	623.67623 .6770 .08	190.36	0.79	0
114	623.55 N013	0.8	623.55623 .550 .08	193	0.78	0
115	623.45 N014	0.8	623.45623 .450 .08	194	0.76	0
116	623.08 N016	0.8	623.08623 .08 0.08	196	0.76	0
117	623.05 N016	0.8	623.05623 .050 .08	196	0.77	0
118	622.835 N018	0.8	622.835622 .8350 .08	198	0.78	0
119	622.76 N017	0.8	622.76622 .760 .08	197	0.76	0
120	622.028 N126	4.8	622.025622 .0320 .08	200.34	0.75	0
121	621.96 N020	0.7	621.96621 .96 0.08	200	0.74	0
122	621.615 N159	7.1	621.61 621.62 0.08	201	0.74	0
123	621.505 N024	0.8	621.505621 .5050 .08	204	0.75	0
124	621.078 N126	4.6	621.075621 .0820 .08	205	0.74	0
125	620.635 N027	0.7	620.635620 .6350 .08	207	0.72	0
126	620.393 N141	4.7	620.39 620.3970.08	207	0.71	0
127	619.938 N031	6	619.934619 .9420 .08	209	0.7	0
128	619.505 N032	0.7	619.505619 .5050 .08	212	0.71	0
129	618.65 N037	0.7	618.65618 .650 .08	217	0.71	0
130	617.78 N041	0.7	617.78617 .78 0.08	220.5	0.72	0
131	617.458 N326	5	617.455617 .4620 .08	224	0.7	0
132	617.098 N262	9.2	617.092617 .1050 .08	229	0.64	0
133	616.702 N275	4.2	616.699616 .7050 .08	231.28	0.59	0
134	616.66 N051	0.6	616.66616 .660 .08	231.5	0.58	0
135	616.58 N051	0.6	616.58616 .58 0.08	231.5	0.58	0
136	616.425 N306	8.4	616.419616 .4310 .08	231.03	0.58	0
137	616.311 N267	15.3	616.299616 .3220 .08	232.43	0.55	0
138	615.867 N296	4.6	615.863615 .870 .08	232	0.53	0
139	615.506 N121	8.7	615.5615 .5120 .08	230.9	0.52	0
140	615.428 N220	4.1	615.425615 .4310 .08	231	0.51	0
141	615.33 N268	9.7	615.322615 .3370 .08	231.64	0.5	0
142	615.214 N240	4.6	615.21 615.2170.08	231	0.5	0
143	615.119 N257	6.4	615.114615 .1240 .08	231	0.5	0
144	615.049 N251	14.7	615.038615 .060 .08	232.57	0.51	0
145	614.639 N253	5.5	614.635614 .6430 .08	231	0.51	0
146	614.348 N264	6.8	614.343614 .3530 .08	231	0.52	0
147	614.323 N248	7.2	614.318614 .3290 .08	232.69	0.51	0
148	614.271 N280	8.3	614.265614 .2770 .08	231.62	0.5	0

149	614.207 N176	3.6	614.205614 .21 0.08	233.32	0.51	0
150	613.514 N251	8.3	613.508613 .520 .08	232	0.51	0
151	612.163 N259	4.6	612.16612 .1670 .08	235.48	0.5	0
152	611.814 N277	5.4	611.81611 .8180 .08	234.13	0.5	0
153	611.622 N152	8.5	611.616611 .6280 .08	233.34	0.48	0
154	610.8 N055	0.5	$610.8 \quad 610.80 .08$	235.5	0.46	0
155	610.602 N235	4	610.599610 .6050 .08	235.68	0.44	0.044
156	610.558 N251	7.4	610.552610 .5630 .08	235.74	0.45	0
157	609.542 N069	3.1	609.54609 .5440 .08	237	0.44	0
158	608.63 N062	0.4	608.63608 .630 .08	242	0.44	0
159	607.601 N213	6.3	607.596607 .6060 .08	243	0.43	0
160	607.338 N196	73.5	607.2607 .4760 .08	242.69	0.42	0
161	606.524 N180	77.8	606.336606 .7130 .08	243.05	0.41	0
162	606.223 N260	4.7	606.219606 .2260 .08	244.86	0.39	0
163	606.121 N036	2.9	606.119606 .1230 .08	246	0.41	0
164	605.711 N286	8.6	605.705605 .7170 .08	247.4	0.39	0
165	605.523 N316	9.8	605.516605 .530 .08	247.42	0.38	0
166	602.474 N223	2.6	602.472602 .4760 .08	249	0.36	0
167	601.856 N359	20.8	601.841601 .8710 .08	245.92	0.35	0
168	601.788 N269	10.6	601.78601 .7960 .08	248	0.35	0
169	601.582 N238	4.7	601.579601 .5860 .08	249.87	0.16	0
170	601.555 N053	0.3	601.555601 .5550 .08	233	0.25	0
171	598.72 N001	0.3	598.72598 .720 .08	180.99	0.28	0
172	597.821 N223	16.1	597.81597 .8330 .08	181.27	0.28	0
173	596.288 N248	43.8	596.25596 .3270 .08	178.77	0.28	0.0477
174	596.226 N254	36	596.197596 .2550 .08	180	0.29	0
175	596.059 N032	57.7	595.996596 .1220 .08	178.6	0.29	0
176	594.185 N071	46.7	594.142594 .2270 .08	179.95	0.33	0
177	593.96 N358	0.3	593.96593 .960 .08	178.5	0.31	0
178	593.149 N262	14.3	593.139593 .1590 .08	178.59	0.31	0
179	583.305 N001	0.5	583.305583 .3050 .08	181	0.54	0
180	577.645 N020	0.8	577.645577 .6450 .08	200	0.76	0
181	577.268 N106	4.4	577.265577 .2710 .08	200.3	0.75	0
182	571.677 N069	4.9	571.674571 .68 0.08	197.69	0.78	0
183	571.482 N303	5	571.478571 .4850 .08	197	0.79	0
184	571.48 N289	51.3	571.43571 .530 .08	197	0.79	0
185	570.952 N249	33.5	570.925570 .9790 .08	202.68	0.82	0
186	566.524 N251	3.4	566.521566 .5260 .08	197	0.77	0
187	566.358 N193	10.9	566.35566 .3660 .08	195.29	0.77	0
188	564.91 N180	9.7	564.902564 .9170 .08	195	0.75	0
189	563.76 N093	5.2	563.756563 .7630 .08	194.46	0.75	0
190	562.875 N228	4.6	562.871562 .8780 .08	195.04	0.73	0
191	562.85 N155	8.3	562.844562 .8560 .08	194.51	0.74	0
192	562.824 N162	8.7	562.818562 .8310 .08	195	0.74	0
193	555.98 N107	5.3	555.976555 .9830 .08	199	0.79	0
194	554.516 N023	0.8	554.516554 .5160 .08	203	0.79	0
195	551.111 N029	0.8	551.111551 .1110 .08	209.4	0.83	0
196	550.37 N 208	5	550.366550 .3740 .08	210.51	0.83	0
197	550.133 N189	4.1	550.129550 .1360 .08	208.77	0.81	0
198	548.463 N157	11.1	548.455548 .4710 .08	206.22	0.78	0
199	548.306 N136	43.5	548.268548 .3450 .08	205	0.77	0
200	548.301 N044	32.6	548.276548 .3250 .08	205	0.77	0
201	544.349 N211	4.3	544.346544 .3530 .08	195.42	0.66	0
202	544.283 N153	11.9	544.274544 .2920 .08	195.2	0.65	0
203	544.236 N103	7.7	544.231544 .2420 .08	195	0.66	0
204	543.955 N314	17.8	543.942543 .9670 .08	196.96	0.67	0
205	542.579 N334	5	542.576542 .5820 .08	196.42	0.65	0
206	542.531 N347	8.6	542.525542 .5370 .08	195	0.65	0
207	542.274 N200	4.1	542.271542 .2780 .08	194.07	0.65	0
208	538.708 N111	12	538.699538 .7160 .08	197.75	0.68	0
209	538.546 N 018	0.7	538.546538 .5460 .08	197.8	0.68	0
210	538.341 N018	0.7	538.341538 .3410 .08	198	0.67	0
211	537.66 N059	18.3	537.647537 .6730 .08	198.5	0.69	0
212	537.606 N019	0.7	537.606537 .6060 .08	199	0.69	0
213	536.534 N091	4.7	536.531536 .5370 .08	202.91	0.74	0
214	535.599 N 202	3.9	535.596535 .6020 .08	195.42	0.67	0
215	529.992 N020	9.3	529.986529 .9980 .08	212.32	1	0
216	529.757 N185	13.7	529.747529 .7680 .08	212	1.01	0
217	529.438 N034	13.1	529.43529 .4470 .08	212.32	1	0
218	527.718 N141	49.1	527.671527 .7650 .08	216.3	1.01	0
219	525.306 N 200	40.6	525.27525 .3410 .08	222	1.06	0
220	525.247 N207	36.6	525.216525 .2780 .08	221.38	1.04	0
221	525.136 N 141	42.6	525.099525 .1730 .08	218.15	1.02	0
222	523.863 N142	9.4	523.856523 .870 .08	221.44	1.06	0
223	523.376 N177	7.4	523.37523 .3810 .08	224.06	0.98	0.1042
224	523.271 N196	6.8	523.265523 .2760 .08	224	1.06	\bigcirc
225	520.794 N058	25.7	520.776520 .8130 .08	229	1.04	0
226	518.144 N235	75.5	517.978518 .2760 .08	253.86	0.95	0

227	518.08 N012	71.1	517.966518 .1940 .08	253	0.96	0
228	508.501 N288	8.3	508.495508 .5080 .08	260.62	0.83	0
229	508.3 N183	8.6	508.294508 .3060 .08	260	0.84	0
230	508.257 N334	27.4	508.236508 .2780 .08	261	0.84	0
231	507.493 N 203	10.9	507.485507 .5010 .08	258	0.84	0
232	507.425 N277	13	507.415507 .4350 .08	259	0.82	0
233	506.838 N095	36.4	506.81506 .8670 .08	262	0.83	0
234	505.447 N283	14	505.437505 .4580 .08	256	0.83	0
235	501.919 N155	14.1	501.909501 .9290 .08	264	0.92	0
236	501.834 N190	15.9	501.823501 .8460 .08	264	0.94	0
237	500.986 N214	14.3	500.975500 .9960 .08	263.08	0.93	0
238	500.958 N018	40.5	500.924500 .9910 .08	263.25	0.94	0
239	500.431 N175	15.1	500.42500 .4410 .08	264.56	0.94	0
240	500.344 N218	25.2	500.324500 .3630 .08	264	0.93	0
241	499.429 N279	10.6	499.421499 .4370 .08	262.38	0.97	0
242	499.022 N240	19.2	499.008499 .0370 .08	262.26	0.94	0.1122
243	498.902 N243	22.7	498.885498 .920 .08	259.56	0.93	\bigcirc
244	498.807 N350	20.4	498.792498 .8220 .08	258.64	0.86	0.0652
245	498.735 N355	27.3	498.715498 .7560 .08	262.96	0.95	0
246	498.649 N171	11.3	498.641498 .6570 .08	263	0.95	0.0496
247	498.599 N257	17.1	498.585498 .6120 .08	264	0.95	0
248	498.309 N016	62.5	498.234498 .3850 .08	264	0.94	0
249	494.79 N304	15.6	494.779494 .8020 .08	264	0.91	0
250	488.567 N073	16.2	488.556488 .5790 .08	209	0.91	0
251	487.454 N210	44.7	487.413487 .4950 .08	208.84	0.91	0
252	487.414 N025	45.7	487.374487 .4530 .08	208.87	0.93	0
253	486.958 N214	23.9	486.939486 .9760 .08	208	0.92	0
254	482.463 N198	3.6	482.46482 .4660 .08	206.81	0.89	0
255	481.686 N 035	53.6	481.633481 .7380 .08	206	0.88	0.124
256	481.467 N357	60.2	481.399481 .5350 .08	206.22	0.89	0
257	480.921 N018	78.1	480.745481 .0970 .08	205.4	0.89	0.0237
258	480.811 N021	77.1	480.647480 .9740 .08	206	0.9	0
259	479.306 N 238	9.3	479.299479 .3130 .08	205.14	0.89	0
260	474.09 N187	14.8	474.079474 .1010 .08	202.97	0.88	0
261	472.915 N143	12.3	472.906472 .9240 .08	204	0.86	0
262	471.72 N 165	12.4	471.71471 .7290 .08	204	0.87	0
263	471.147 N027	25.2	471.129471 .1650 .08	205	0.86	0
264	471. 051 N023	0.8	471.051471 .0510 .08	203	0.85	0
265	470.888 N 207	61.3	470.812470 .9630 .08	203	0.84	0
266	470.753 N 045	66.7	470.663470 .7820 .08	203.77	0.85	0
267	470.528 N126	56.2	470.468470 .5880 .08	203.66	0.86	0
268	470.386 N343	8.3	470.381470 .3910 .08	203	0.84	0
269	470.101 N130	58.2	470.036470 .1660 .08	203	0.87	0
270	470.076 N088	5.6	470.043470 .1080 .273	202.93	0.84	0
271	469.079 N290	1.5	469.068469 .0890 .284	205	0.84	0
272	468.984 N 222	10.1	468.925469 .0430 .284	203.91	0.84	0
273	468.53 N041	2.5	468.314468 .7450 .284	203.48	0.85	0
274	468.425 N070	26.3	468.188468 .6620 .331	202	0.84	0
275	468.409 N028	5	468.369468 .4490 .331	202.59	0.85	0
276	468.304 N181	8.5	468.24468 .3680 .284	202	0.85	0.0752
277	468.228 N224	11.6	468.128468 .328 0.284	202	0.84	0
278	465.449 N251	7.2	465.365465 .5320 .329	203	0.81	0
279	464.909 N187	19.1	464.74465 .0780 .282	202.6	0.83	0
280	463.491 N001	11.4	463.406463 .5760 .289	202	0.84	0
281	463.244 N060	21.8	463.108463 .3810 .289	203.06	0.84	0
282	461.069 N159	27	460.809461 .3290 .339	201.21	0.81	0.3442
283	460.657 N161	39.6	460.317460 .9980 .289	202	0.81	0
284	460.579 N250	13.6	460.463460 .6940 .289	202	0.81	0
285	460.296 N324	13.9	$460.172460 .42 \quad 0.289$	202.11	0.82	0
286	460.283 N077	16	460.154460 .4110 .289	202	0.82	0
287	457.688 N188	2.7	457.661457 .7150 .289	201.59	0.78	0
288	457.291 N 245	8.3	457.209457 .3740 .289	200	0.76	0
289	456.945 N079	16.1	456.826457 .0650 .289	201	0.77	0
290	455.924 N194	33.3	455.558456 .2890 .342	200.86	0.76	0
291	454.597 N140	25.6	454.386454 .8080 .346	204.84	0.57	0
292	452.395 N193	21.1	452.235452 .5560 .29	213.04	0.54	0
293	443.007 N149	11.5	442.93443 .0840 .277	233.61	0.48	0
294	442.536 N 100	29	442.317442 .7550 .278	237.13	0.44	0.045
295	442.485 N092	27.3	442.237442 .7340 .32	236.97	0.42	0
296	442.361 N056	0.4	442.361442 .3610 .318	236.4	0.44	0

RGLDIPv6.2 DIP DATA INTERPRETATION: FRACTURE ANALYSIS
borehole
zone from 441.000 to 707.000 m
North ref is magnetic
11 Nov 2009

Data is classed into 1 types
3 BHTV_dips
Quality cut-off level: *
Mean well deviation: $0.6^{\circ} \mathrm{deg}$ to $\mathrm{N} 207.4^{\circ}$

4	$\begin{aligned} & \text { 1-circl } \\ & \text { SEAF } \end{aligned}$	es de CH AR	$\begin{aligned} & \text { fined } \\ & \text { EA } \end{aligned}$	MEAN DIP			
	azim	pl	cone	strike	dip	n	f
1	$3.0{ }^{\circ}$	88.0°	$32.9{ }^{\circ}$	128°	1°	258	0.97
2	201.0°	31.0°	$24.6{ }^{\circ}$	$292{ }^{\circ}$	61°	10	0.08
3	$46.5{ }^{\circ}$	$33.8{ }^{\circ}$	$25.4{ }^{\circ}$	130°	48°	10	0.06
4	321.1°	$43.6{ }^{\circ}$	17.7°	48°	48°	6	0.03

Total number of data $=284$
Number of data unaccounted for = 12

DEPTH	INCL	AZIMUTH
2	0.64	183.17
4	0.6	239.72
6	0.52	269.78
8	0.49	185.08
10	0.42	148.13
12	0.39	29.61
14	0.38	312.81
16	0.37	102.28
18	0.43	147.6
20	0.45	37.22
22	0.47	72.53
24	0.41	320.89
26	0.5	259.56
28	0.58	184.12
30	0.6	245.2
32	0.63	163.29
34	0.66	163.92
36	0.68	126.28
38	0.69	21.26
40	0.74	198.97
42	0.7	102.27
44	0.74	23.86
46	0.84	335.29
48	0.73	218.05
50	0.84	193.04
52	0.95	191.66
54	0.92	300.46
56	0.9	196.65
58	0.71	140.77
60	0.78	111.05
62	0.8	221.15
64	0.68	238.92
66	0.68	173.11
68	0.73	145.76
70	0.76	270.23
72	0.7	157.78
74	0.61	253.33
76	0.68	171.94
78	0.6	161.25
80	0.52	184.75
82	0.4	49.11
84	0.48	118.15
86	0.24	45.12
88	0.23	127.29
90	0.11	151.92
92	0.03	125.9
94	0.03	304.66
96	0.13	259.19
98	0.37	241.87
100	0.35	88.07
102	0.39	53.55
104	0.45	240.62
106	0.5	287.3
108	0.68	144.19
110	0.74	130.51
112	0.77	42.78
114	0.69	211.5
116	0.8	259.93
118	0.89	106.43
120	0.78	26.76
122	0.81	300.95
124	0.83	151.92
126	0.77	255.27
128	0.73	34.3
130	0.78	198.39
132	0.83	166.71
134	0.8	26.05
136	0.77	114.88
138	0.86	129.35
140	0.78	78.93

142	0.72	23.5
144	0.68	268.05
146	0.68	76.5
148	0.7	136.71
150	0.61	308.45
152	0.57	70.15
154	0.57	111.08
156	0.6	87.67
158	0.54	175.86
160	0.59	228.75
162	0.67	180.09
164	0.66	218.43
166	0.71	136.21
168	0.74	214.9
170	0.78	61.25
172	0.78	158.55
174	0.82	199.56
176	0.87	32.86
178	0.85	187.15
180	0.82	283.71
182	0.9	216.05
184	0.92	101.95
186	0.92	80.55
188	0.82	173.85
190	0.9	153.66
192	0.93	170.45
194	0.92	214.05
196	0.87	181.92
198	0.94	112.63
200	0.92	160
202	0.86	25.77
204	0.87	240.22
206	0.84	78.27
208	0.81	123.28
210	0.75	270.87
212	0.75	209.15
214	0.74	87.36
216	0.67	195.34
218	0.69	227.34
220	0.68	94.27
222	0.57	48.85
224	0.53	88.17
226	0.62	145.13
228	0.67	126.83
230	0.71	311.7
232	0.68	169.61
234	0.77	79.89
236	0.81	153.15
238	0.81	59.24
240	0.78	194.12
242	0.82	135.31
244	0.85	141.66
246	0.81	80.76
248	0.8	316.75
250	0.88	148.51
252	0.83	53.45
254	0.81	38.15
256	0.84	179.41
258	0.81	85.59
260	0.75	264.7
262	0.75	156.13
264	0.73	228.19
266	0.67	130.49
268	0.67	74.42
270	0.61	97.57
272	0.62	87.85
274	0.63	144.33
276	0.57	179.45
278	0.47	53.89
280	0.34	308.79
282	0.13	170.48
284	0.21	115.6
286	0.43	243.8
288	0.55	261.14
290	0.74	170.87
292	0.77	158.85
294	0.78	258.35

296	0.84	82.59
298	0.87	227.98
300	0.83	342.45
302	0.88	172.45
304	0.84	116.46
306	0.81	163.74
308	0.87	274.86
310	0.82	267.84
312	0.82	290.61
314	0.81	113.08
316	0.81	118.27
318	0.81	131.95
320	0.83	220.17
322	0.83	219.2
324	0.84	84.75
326	0.82	298.52
328	0.83	247.55
330	0.83	100.15
332	0.85	203.61
334	0.81	112.75
336	0.8	124.95
338	0.75	332.8
340	0.74	60.74
342	0.73	144.12
344	0.67	215.7
346	0.63	147.85
348	0.53	97.55
350	0.42	217.32
352	0.23	176.88
354	0.07	214.85
356	0.35	292.33
358	0.51	232.02
360	0.63	282.19
362	0.69	246.6
364	0.66	84.99
366	0.62	336.05
368	0.66	186.15
370	0.7	145.44
372	0.72	98.53
374	0.72	129.38
376	0.71	255.88
378	0.72	191.07
380	0.77	169.94
382	0.78	139.42
384	0.81	298.15
386	0.9	134.41
388	0.51	173.21
390	0.54	165.2
392	0.54	175.6
394	0.56	222.08
396	0.6	222.15
398	0.62	120.83
400	0.67	232.73
402	0.75	92.3
404	0.76	161.33
406	0.79	116.92
408	0.86	301.45
410	0.87	278.82
412	0.9	133.69
414	0.91	234.38
416	0.9	320.35
418	0.89	47.74
420	0.79	285.02
422	0.81	237.13
424	0.76	330.9
426	0.61	302.62
428	0.66	268.25
430	0.65	318.25
432	0.67	299.31
434	0.64	163.6
436	0.73	114.65
438	0.8	180.44
440	0.85	315.79
442	0.7	190.59
444	0.7	194.24
446	0.63	198.18
448	0.73	195.65

450	0.8	195.54
452	0.85	193.96
454	0.87	194.49
456	0.89	195.55
458	0.91	195.23
460	0.9	194.81
462	0.95	195.35
464	0.93	196.51
466	0.95	198.19
468	0.92	196.44
470	0.93	199.36
472	0.9	198.53
474	0.89	196.84
476	0.76	192.95
478	0.64	199.23
480	0.47	198.78
482	0.33	221.27
484	0.31	255.76
486	0.33	249.61
488	0.39	272.62
490	0.52	280.06
492	0.54	280.19
494	0.57	278.45
496	0.58	279.55
498	0.61	279.45
500	0.65	274.47
502	0.64	277.85
504	0.65	275.25
506	0.66	268.45
508	0.72	228.39
510	0.71	214.65
512	0.73	210.63
514	0.74	208.48
516	0.76	207.84
518	0.77	204.97
520	0.78	201.57
522	0.74	194.15
524	0.71	189.28
526	0.65	184.23
528	0.55	179.29
530	0.45	180.28
532	0.32	183.21
534	0.2	198.68
536	0.17	203.23
538	0.15	199.45
540	0.14	195.31
542	0.12	194.83
544	0.14	186.2
546	0.32	176.75
548	0.43	171
550	0.34	174.48
552	0.25	174.06
554	0.18	175.06
556	0.17	178.85
558	0.13	178.25
560	0.07	195.31
562	0.06	280.86
564	0.16	303.06
566	0.27	302.87
568	0.5	293.12
570	0.61	280.45
572	0.67	218.94
574	0.66	204.58
576	0.67	203.24
578	0.65	206.45
580	0.66	218.98
582	0.66	226.39
584	0.65	224
586	0.66	229.47
588	0.65	240.2
590	0.61	269.51
592	0.61	267.17
594	0.62	262.88
596	0.66	220.63
598	0.66	211.27
600	0.64	194.97
602	0.67	190.75

NGU Report 2010.018
Appendix 3 side 5

604	0.67	185.36
606	0.7	181.85
608	0.69	179.15
610	0.7	175.97
612	0.7	172.07
614	0.7	169.27
616	0.68	164.13
618	0.66	159.83
620	0.62	151.24
622	0.54	144.7
624	0.46	140
626	0.33	136.76
628	0.3	131.7
630	0.24	96.52
632	0.13	130.19
634	0.1	302.54
636	0.05	293.07
638	0.09	299.28
640	0.15	293.6
642	0.3	286.2
644	0.31	281.17
646	0.37	269.51
648	0.41	247.25
650	0.42	276.4
652	0.4	273.95
654	0.47	270.11
656	0.53	264.6
658	0.56	240.45
660	0.64	233.51
662	0.68	202.63
664	0.7	177.65
666	0.66	159.58
668	0.71	139.83
670	0.7	154.98
672	0.72	158.59
674	0.66	152.91
676	0.75	168.21
678	0.65	159.57
680	0.65	178.55
682	0.66	185.34
684	0.67	197.22
686	0.63	188.45
688	0.67	171.91
690	0.67	159.09
692	0.67	148.76
694	0.66	142.97
696	0.68	140.25
698	0.66	132.7
700	0.67	128.18
702	0.71	129.51
704	0.63	123.52
706	0.66	126.51
708	0.45	104.36
710	1	118.85

