NORDLANDGRANEN Parsei Sunnan - Grong

NORGES GEOLOGISKE UNDERSØKELSE Nr. 101

ILDFASTE OKSYDERS FYSIKALSKE KEMI

OVERSIGT OVER NYERE PRÆCISIONSUNDERSØKELSER

AV

OLAF ANDERSEN

MED 2 PLANCHER, 4 TEKSTFIGURER OG ENGLISH SUMMARY

STATENS RAASTOFKOMITE PUBLIKATION Nr. 1

KRISTIANIA 1922

1 KOMMISSION HOS H. ASCHEHOUG & CO.

NORGES STATSPANER HOVEDSTYRET

Indholdsfortegnelse.

	olue
Indiedning	5
Metoder	7
Ovner	7
Pyrometere	8
Termiske metoder	9
Mikroskopiske metoder	10
Resultater	11
De enkelte oksyder	11
Magnesia	11
Kalk	12
Lerjord	12
Kiselsyre	13
Hovedformer	13
Smeltepunkter	13
Biformer	14
Anvendelser	15
Jernoksyder	16
Ferrioksyd	16
Ferroferrioksyd	17
Ferrooksyd	18
Tokomponentsystemer	18
Systemet MgO-CaO	18
- Al ₂ O ₃ -SiO ₂	19
MgO-Al ₂ O ₈	21
— MgO—SiO ₂	23
CaO-Al ₂ O ₃	25
- CaO-SiO ₂	26
- CaO-Fe ₂ O ₂	28
Trekomponentsystemer	28
Likevegtsdiagrammer	28
Systemet CaO-MgO-Al ₂ O ₄	31
- CaO-Al ₂ O ₃ -SiO ₃	33
- MgO-Al ₂ O ₂ -SiO ₂	86
- CaO-MgO-SiO	87
Flerkomponentsystemer	88
Tabel L Oksyder	41
- II. Forbindelser	49
- III. Invariante punkter	40
Litteraturfortegnelse	59
English Summary	5.9
The second	13/3

Indledning.

De omfattende præcisionsundersøkelser over tungtsmeltelige metaloksyder og deres blandingssystemer, som er utført i de sidste aar, danner et av de mange eksempler paa hvorledes »rent videnskabelig« arbeide kan frembringe resultater av praktisk betydning. Disse undersøkelser har nemlig været utført væsentlig i den hensigt at skaffe den videnskabelige geologi (d. v. s. dens underavdeling petrografien) nøiagtige data angaaende mineralernes og bergarternes fysikalsk-kemiske likevegtsforhold ved høie temperaturer. Ikkedestomindre har resultaterne av dette forskningsarbeide faat stor betydning for forstaaelsen av visse industrielle problemer, først og fremst saadanne som knytter sig til ildfaste stoffers fremstilling og anvendelse ved høie temperaturer. Dette er jo ogsaa ganske naturlig naar man erindrer at den fysikalsk-kemiske petrografi og de ildfaste stoffers teknologi - foruten at de begge befatter sig med høie temperaturer - ogsaa behandler stoffer hvori de samme kemiske bestanddele, nemlig de almindeligste bergartskomponenter, indgaar.

De vigtigste bergartskomponenter er opført i nedenstaaende tabel efter en beregnet gjennemsnitsanalyse av jordskorpen¹. I antal utgjør disse hovedbestanddele bare ca. en tiendedel av alle de stoffer som kjendes, men det sees at de 9 opførte oksyder tilsammen dog utgjør 98 pct. i vegt av jordskorpens mid delsammensætning, og de 6 første i tabellen utgjør ca. 90 pct.

¹ H. S. Washington, The chemistry of the earth's crust, Journ. Franklin Inst. 190, 773, 1920.

Jordskorpens vigtigste bestanddele i vegts pct.

SiO ₂	59.09	
Al ₂ O ₈	15.35	
Fe ₂ O ₃	3.08	80.80
FeO	3.80	00.00
MgO	3.49	
CaO	5.09	
NagO	3.25	
K_2O	2.98	
$H_{2}O$	2.02	
Sum	98.00	

Det er altsaa disse bestanddele og de derav sammensatte mineraler og mineralsystemer, som har været gjenstand for de mest indgaaende teoretiske og eksperimentelle undersøkelser. Vi kjender allerede i grove træk en del av de love som behersker krystallisation, smeltning og omvandling i denne slags mineralkomplekser.

Netop de samme love gjælder imidlertid for de processer som foregaar naar ildfaste stoffer »bakes«, »brændes« og »sintres« under fremstillingen eller smeltes og omvandles under benyttelsen, og de samme oksyder som utgjør hovedmassen av de almindelige bergarter indgaar ogsaa - som nævnt - enkeltvis eller i blandinger i de vigtigste ildfaste stoffer. Av de i tabellen opførte bestanddele er det særlig kiselsvre, lerjord, kalk og magnesia som har hvad man kan kalde ildfaste egenskaper. Disse komponenter utgjør, sammen med smaa mængder av jernoksyder, de vigtigste bestanddele i ildfaste stoffer, men de to alkalioksyder og vand spiller ogsaa tildels en vigtig rolle. Vand indgaar vistnok ikke i nævneværdige mængder i de færdige produkter, men er i høi grad væsentlig under fabrikationen, idet de fleste ildfaste produkter fremstilles av plastiske materialer og formes i vaat tilstand. Alkalioksyder findes derimot i smaa mængder i mange av de færdige produkter, hvor de sammen med jernoksyderne synes at spille en rolle i de bindende bestanddele av produkterne. De 9 vigtigste bergartskomponenter

danner altsaa tydeligvis ogsaa hovedmassen av de stoffer man har at gjøre med under fabrikationen av ildfaste produkter.

Det er saaledes klart at den moderne eksperimentelle petrografi og de ildfaste stoffers teknologi har fælles interesser i studiet av de omhandlede oksyders og deres blandingers fysikalske kemi. Det eksakte eksperimentelle arbeide har forøvrig ogsaa faat betydning for andre keramiske produkters¹ teknologi og har f. eks. gjort sig gjældende i cementindustrien, glasindustrien og flere av lerproduktindustriens brancher.

Det antydede forskningsarbeide som for en væsentlig del er utført ved Carnegie Institutets Geofysiske Laboratorium i Washington i løpet av de sidste 16 aar, er beskrevet i talrige videnskabelige avhandlinger. Da disse avhandlinger imidlertid er spredt i forskjellige tidsskrifter som tildels er ukjendt av norske teknikere, fremkommer nærværende artikel som et forsøk paa at meddele i oversigtlig form nogen av de vigtigste videnskabelige resultater som dette forskningsarbeide har bragt for dagen. Ved at ha et utdrag av disse resultater samlet, tør det være lettere for dem som er interessert i resultaternes praktiske anvendelse at finde frem til de specielle data som søkes.

Metoder.

I det følgende gives nogen faa orienterende oplysninger om de almindelige metoder og eksperimentelle hjælpemidler som anvendes ved de her betragtede undersøkelser.

Ovner. Den bekvemmeste laboratorieovn for temperaturer op til 1600° er en elektrisk motstandsovn hvor heteelementet bestaar av platina i form av traad eller baand viklet utenpaa et rør av kunstig korund («alundum«) eller et andet ildfast stof. Utenom platinamotstanden anbringes gjerne et større heteelement med motstand av kromnikkeltraad. Ved at opvarme dette med en passende strøm formindskes varmetapet fra platinaelementet,

-7-

Keramiske produkter omfatter i ordets videste betydning alle produkter som fremstilles av ikke-metalliske mineralske raastoffer og bibringes sine værdifulde egenskaper ved at behandles ved høie temperaturer.

og den temperatur som platinaet maa ophetes til for at en viss temperatur i ovnens indre skal naaes nedsættes betydelig.

For høiere temperaturer, op til 2300°, kan man anvende en ovn hvor ophetningselementet bestaar av et tykt rør av iridium, hvorigjennem sendes en lavspændt strøm av stor styrke. En saadan iridiumovn er meget bekvem, men falder kostbar i anskaffelse og bruk.

For endnu høiere temperaturer brukes gjerne en grafiteller kulmotstand som heteelement. Ovnen bør da helst anordnes saa den kan indesluttes i neutral eller reducerende atmosfære eller i vakuum. Med en vakuumovn hvor ophetningen, besørges av en grafitspiral (Arsemovnen), har man uten vanskelighet opnaad temperaturer paa ca. 3000°.

Lysbueovner, som jo gir de høieste opnaaelige temperaturer, egner sig ikke for præcisionsforsøk, da det er vanskelig at regulere temperaturen i disse ovner med tilstrækkelig nøiagtighet. Naar det kun gjælder smeltning av høiildfaste stoffer er lysbueovner naturligvis uundværlige.

Ved temperaturer under 1100° yder motstandsovner med kromnikkelvindinger fortræffelig tjeneste.

Pyrometere. Temperaturer op til 1600° maales nøiagtigst med platina-platinarhodium termoelement. Elementets termoelektriske kraft avlæses for mindre nøiagtige maalinger med millivoltmeter (avlæsningsnøiagtighet 5°—10°) og for præcisionsmaalinger med potentiometer (avlæsningsnøiagtighet 0.1°). Ved lavere temperaturer kan man bruke termoelementer med større følsomhet end platina-platinarhodiumelementet, saaledes for temperaturer op til 350° kobber-konstantanelementet og for temperaturer op til 1100°—1200° et eller andet av de mange »base metal« elementer.

Ved maaling av høiere temperaturer end 1600° er man henvist til at bruke et optisk pyrometer eller et straalningspyrometer.

Det mest praktiske optiske pyrometer er et instrument opfundet av amerikaneren Morse (forbedret av Holborn-Kurlbaum). Det bestaar av en kikkert, i hvis objektiv-brændplan er anbragt en elektrisk glødelampe som kan reguleres ved en reostat i serie med strømkilden og lampen. Man regulerer strømmen saa lampens filament forsvinder mot billedet av den glødende gjenstand hvis temperatur skal maales. Strømstyrken i lampen gir da et maal for temperaturen, idet naturligvis forholdet mellem temperatur og strømstyrke maa findes ved kalibrering av hvert enkelt instrument.

En enkel type av straalningspyrometer (Thwings) bestaar av et konisk speil som samler en kegleformig bundt av mørke og lyse straaler fra det varme legeme i et punkt, hvor der er anbragt en termosøile. Dennes elektriske spænding gir da ved rigtig kalibrering uttryk for det straalende legemes temperatur.

Begge de antydede typer av instrumenter er lette at behandle, men de gir mindre nøiagtighet end termoelementer.

I den keramiske industri bruker man ved kontrol av brændinger i stor utstrækning saakaldte pyrometriske kegler (Segerkegler). Disse angir ikke egentlig temperatur, men snarere varmevirkning, idet keglernes ombøining foruten av den maksimale temperatur ogsaa avhænger av ophetningens hastighet og varighet og delvis av den atmosfære (neutral, oksyderende eller reducerende) som omgir keglerne. Som veiledere under brænding av keramiske produkter er saadanne kegler fortrinlige, men som temperaturmaalere kan de ikke erstatte selv de simpleste pyrometere.

Termiske metoder. Med de ovenfor antydede hjælpemidler utføres termiske undersøkelser av de forskjellige substanser. Herunder anvendes enten metoden med ophetningskurver eller »quenching« metoden.

Ophetningskurver konstrueres med tid som abscisse og temperatur som ordinat paa grundlag av temperaturavlæsninger foretat med regelmæssige tidsintervaller (f. eks. 30 sekunder) eller de tegnes direkte av selvregistrerende instrumenter. Ethvert «knæk« i en saadan kurve angir at en fysisk eller kemisk omvandling, ledsaget av en varmereaktion, har fundet sted i den undersøkte substans ved den temperatur hvor knækket findes. Man bruker ved disse undersøkelser ophetningskurver — og ikke avkjølingskurver som i metallografien — fordi der i silikater og lignende oksydblandinger meget let optræder underkjøling naar den smeltede substans krystalliserer ved hurtig avkjøling. Smeltepunkter bestemt ved avkjølingskurver vilde derfor bli for lave. Ved ophetning optræder der derimot praktisk talt aldrig nogen overhetning, saa det smeltepunkt som angives av en ophetningskurve vil være rigtig.

Tydningen av ophetningskurvene (eller avkjølingskurvene) med sine forskjellige knæk byr imidlertid i mange tilfælde paa store vanskeligheter. Det er ofte umulig at avgjøre hvad slags omvandling et knæk i virkeligheten angir. Desuten foregaar flere omvandlinger saa langsomt eller med saa ubetydelig varmereaktion at der overhodet ikke blir noget »knæk« paa kurven. Disse vanskeligheter overvindes ved at anvende »quenching« metoden. Man holder den substans som undersøkes ved en bestemt temperatur saa længe at kemisk likevegt sikkert maa være indtraadt. Derpaa avkjøles substansen pludselig, hvorved den tilstand som den befandt sig i ved den høie temperatur, paa en maate fikseres saa den holder sig, og substansen kan undersøkes under mikroskopet ved almindelig temperatur. Den del av substansen som har været smeltet vil vise sig som glas, mens den usmeltede del bestaar av en eller flere slags krystaller. Ved nu at foreta saadanne »quenching« eksperimenter med forskjellige blandinger og ved forskjellige temperaturer, kan man for en hvilkensomhelst blandingsserie faa fastslaat forholdet mellem kemisk sammensætning og de temperaturer hvor omvandlinger og smeltninger finder sted. Dette gir de nødvendige data for konstruktion av vedkommende systems likevegtsdiagram.

Mikroskopiske metoder. De produkter man faar ved de omhandlede »quenching«-forsøk er ofte saa finkornige at deres undersøkelse byr paa adskillige vanskeligheter. Man anvender en modifikation av det almindelige petrografiske mikroskop, beregnet paa undersøkelse av særlig smaa mineralkorn. Det finpulveriserte produkt indleires mellem to glas i en draape av en væske hvis brytningsindeks kjendes. Det kan da avgjøres med stor skarphet hvilket av de to stoffer — væsken eller pulveret — har den høieste brytningsindeks, og ved at prøve forskjellige væsker kan man let finde en som har samme indeks som pulveret, eller som en av dets bestanddele hvis det er sammensat. Derved faar man bestemt brytningsindeks for vedkommende substans, og da denne konstant er av stor værdi i mineraldiagnosen, kan man ved dens hjælp i de fleste tilfælde identificere substansen selv om den foreligger i saa smaa korn at en bestemmelse av de øvrige optiske konstanter er umulig. Hvis kornene er mindst ¹/100 mm. i tversnit, kan man foruten brytningsindeks som regel ogsaa bestemme konstanter som dobbeltbrytning, optisk karakter og aksevinkel.

Resultater.

I tabellerne I, II og III er opført de vigtigste data for de fire ildfaste oksyder CaO, MgO, Al₂O₃ og SiO₂ og deres hittil undersøkte blandingssystemer samt nogen faa data for systemer hvori jernoksyderne forekommer.

De grafiske fremstillinger i fig. 2, 3 og 4 og pl. I og II, ¹ gir ved hjælp av likevegtsdiagrammer en oversigt over det arbeide som hittil er utført med de fire ovennævnte oksyder og jernoksyderne samt de to- eller trekomponentsystemer hvori disse 6 oksyder indgaar. I diagrammerne er de kemiske sammensætninger gjengit i molekylarprocent og temperaturerne i C°. I tabellerne og overalt ellers i denne artikel er sammensætninger gjengit i vegtprocent. De følgende bemerkninger tjener til nærmere forklaring av disse diagrammer og tabeller.

De enkelte oksyder.

De rene oksyders egenskaper er gjengit i tabel I og grafisk i pl. I.

Magnesia, MgO.

Rent magnesiumoksyd, som er det mest ildfaste av alle de almindelige oksyder, kjendes kun i *en* krystallisert modifikation, identisk med mineralet periklas.

Fra magnesiarike silikatsmelter krystalliserer det enten i oktaedere eller i runde korn. Kunstige smelter av ren magnesia kan krystallisere i meget grovkornige aggregater.

¹ Pl. I og II efter R. B. Sosman (J. Ind. & Eng. Chem. 8, 985, 1916) med tilføielse av endel nylig publicerte data.

Magnesia, som fremstilles ved kalcinering av karbonat, er et meget let, floket pulver, som først ved den elektriske ovns temperaturer sintrer sammen til tættere, helt eller delvis krystalliserte masser.

Kalk, CaO.

Det rene, krystalliserte kalciumoksyd har et — forøvrig litet undersøkt — omvandlingspunkt ved omkring 420° . Omvandlingen synes at være av omtrent samme natur som den velkjendte kvarts-inversion ved 575° , og begge de to krystalliserte kalkmodifikationer synes at være regulære og idetheletat at staa hinanden nær i fysiske egenskaper.

Ved dissociation av kalciumkarbonat ved rødglødhete faaes en porøs, rimeligvis amorf, modifikation av kalk som reagerer meget livligere med kulsyre og vand (altsaa er mindre holdbar i luften) end den krystalliserte modifikation. Ved sterk glødning gaar den amorfe modifikation over til den krystalliserte.

Lerjord, Al₂O₃.

Aluminiumoksydet optræder i to krystalliserte modifikationer. Den som almindeligst dannes ved krystallisation av smelter er den saakaldte α -Al₂O₃ som er identisk med mineralet korund. Den anden saakaldte β -form krystalliserer undertiden fra Al₂O₃smelter eller fra lerjordrike silikatsmelter. Den er distinkt forskjellig fra α -formen, men den nøiagtige fysikalsk-kemiske relation mellem de to former er endnu ikke fastslaat. Der er dog sandsynligvis ikke noget omvandlingspunkt mellem de to, og β -formen danner isaafald en monotrop¹ modifikation i forhold til α -formen.

I kunstige slipematerialer av smeltet aluminiumoksyd er α -formen (korund) den altoverveiende bestanddel, men β -formen har ogsaa leilighetsvis været observert i smaa mængder.

¹ Monotrope omvandlinger er saadanne hvor omvandlingen ikke foregaar ved bestemt temperatur og hvor kun den ene, ustabile, form kan omvandles til den anden, stabile, men ikke omvendt. Ved enantiotrope modifikationer foregaar omvandlingen reversibelt, omtrent like let i begge retninger, og ved en bestemt temperatur, omvandlingspunktet.

Kiselsyre, SiO₂.

Kiselsyren udmerker sig ved sine mange forskjellige modifikationer. Der er tre sikkert definerte hovedformer, nemlig kvarts, tridymit og kristobalit og desuten en fjerde form, kalcedon, hvis forhold til de øvrige ikke er helt opklaret. Av de tre hovedformer har kvarts og kristobalit hver to biformer, mens tridymit har tre. Der er saaledes syv krystalliserte former, hvis relationer er kjendt og desuten kalcedon som den ottende. Hertil kommer amorf kiselsyre som kjendes i to former, kiselsyre-glas (»kvartsglas«) og fældt kiselsyre. Den sidstnævnte er dog i vandfri tilstand identisk med glasset.

Pl. II indeholder en grafisk fremstilling av de forskjellige formers stabilitetsomraader og omvandlingstemperaturer. De samme data er ogsaa gjengit i tabel I, hvor desuten de optiske og andre fysiske egenskaper er opført. En skematisk oversigt over volumforandringerne ved de forskjellige omvandlinger er gjengit i pl. II.

Hovedformer. De tre hovedformer kvarts, tridymit og kristobalit danner enantiotrope modifikationer av kiselsyren. Omvandlingerne foregaar imidlertid meget trægt, og de forskjellige former kan bestaa i lang tid utenfor sine stabilitetsomraader. Tridymit og kvarts kan omvandles til kristobalit ved simpel ophetning til temperaturer inden kristobalitens stabilitetsomraade (1470°-1710°). Likeledes kan smeltet kiselsyre (kvartsglas) bringes til at krystallisere til kristobalit ved ophetning i samme temperaturinterval. Omvandlingen fra kvarts til tridymit har ogsaa en enkelt gang (Ferguson & Merwin) været frembragt paa samme maate, men som regel foregaar den ikke ved varmevirkninger alene. Ved ophetning med flussmidler til temperaturer inden tridymitens stabilitetsomraade (870°-1470°) kan dog omvandlingen iverksættes med lethet. Ingen form av kiselsyre har kunnet omvandles til kvarts uten hjælp av flussmidler. Det samme gjælder for omvandling fra de andre former til tridymit naar undtages den nævnte omvandling fra kvarts.

Smeltepunkter. Smeltningen av kristobalitens høitemperaturform ved 1710° foregaar meget trægt, og smelten er seigtflytende. Kvarts og tridymit kan paa grund av den langsomme omvandling ogsaa delvis smeltes uten først at omvandles til kristobalit. Kvarts smelter da ved ca. 1470° eller litt lavere og tridymit ved ca. 1670° . De ustabile smelter vil dog snart krystallisere til kristobalit.

Biformer. Omvandlingerne mellem α - og β -formerne av de tre hovedmodifikationer er enantiotrope. De foregaar momentant og ledsages av tydelige varmereaktioner, av volumforandringer og av smaa forandringer i krystallografiske og optiske egenskaper (tab. I og pl. I).

Kvartsens α - β -omvandling ved 575°, og idetheletat dens forhold ved temperaturforandringer er bemerkelsesværdig. Ved ophetning fra almindelig temperatur vil kvarts utvide sig, først langsomt og derpaa stadig hurtigere, indtil der ved omvandlingspunktet, 575°, er et pludselig sprang i volumforøkelsen. Efter at dette punkt er passert vil en fortsat ophetning av høitemperaturformen bevirke en svak formindskelse i volum. Følgende tal sammen med den grafiske fremstilling pl. II tjener til nærmere belysning av disse forhold:

TemperaturgrænserVolumforøkelse i pct. av volumet ved 20° $20^{\circ}-450^{\circ}$ + 2,4 $450^{\circ}-575^{\circ}$ + 2,8 $575^{\circ}-900^{\circ}$ ÷ 0,5

For de øvrige av kvartsens fysikalske konstanter, f. eks. brytningsindices, faar man temperaturkurver som ligner kurven for de spec.volum og viser det samme sprang ved 575°. α - β -omvandlingen foregaar ogsaa skarpt ved avkjøling, men da ved en litt lavere temperatur (570°) end ved ophetning.

Tridymitens og kristobalitens α - β -omvandling foregaar med adskillig skarphet. Omvandlingspunkterne ligger imidlertid i et temperaturomraade hvor ingen av de optrædende former er stabile, og det skyldes kun den overmaade træge omvandling til den stabile form (i dette tilfælde kvarts) at tridymit og kristobalit idetheletat kan bestaa ved disse temperaturer.

Tridymit har omvåndlingspunkter ved henholdsvis 117° og 163° (pl. I, tab. I) som viser sig skarpt ved ophetning, men mindre skarpt ved avkjøling. Den form, β_1 -formen, som er stabil mellem de to nævnte temperaturer, synes dog at være litet

forskjellig fra høitemperaturformen, β_2 -formen. For praktiske øiemed er det derfor tilstrækkelig at tale om en lavtemperaturform, α -formen, og en høitemperaturform, β -formen, og et α - β omvandlingspunkt ved 117°. Volumforandringen ved denne omvandling er ubetydelig og ikke nøiagtig bestemt¹.

Kristobalitens α - β -omvandling er skarp, men omvandlingstemperaturen varierer inden temmelig vide grænser, og avhænger av den varmebehandling hvorved kristobaliten er fremstillet. Desuten ligger omvandlingspunktet adskillig høiere ved ophetning end ved avkjøling. Den høieste omvandlingstemperatur ved ophetning er ca. 275° og den laveste ved avkjøling ca. 200° (pl. I, tab. I). Ved overgangen fra lav- til høitemperaturform er der en forholdsvis betydelig volumforøkelse (2—5 pct.). Ved høitemperaturformens smeltning (ved 1710°) er der derimot praktisk talt ingen volumforandring.

Anvendelser. De nævnte egenskaper hos de forskjellige kiselsyreformer spiller en vigtig rolle under fremstillingen og anvendelsen av de ildfaste materialer som bestaar hovedsagelig av kiselsyre.

Raastoffet for saadanne produkter er omtrent udelukkende kvarts i en eller anden form, gjerne kvartsit. Det færdige produkt, silikasten, anvendes imidlertid altid ved temperaturer hvor kvartsen ikke er stabil og hvor der følgelig maa foregaa en omvandling til en av de former som kan bestaa ved høie temperaturer. Silikasten, som har været brukt i længere tid i en glassmelteovn er f. eks. for en stor del omvandlet til tridymit. I ovner hvor temperaturen har været høiere kan man finde sten som indeholder en betydelig mængde kristobalit, og ved de høieste temperaturer kan det ogsaa hænde at en del av stenen er smeltet og har dannet glas. I alle tilfælde er resultatet et produkt som har et ganske betydelig større volum end det utgangsmateriale, kvarts, hvorav stenen er fremstillet. Saaledes er volumforøkelsen ved omvandling fra kvarts til tridymit ca. 15 pct., og ved om-

¹ Ifølge den grafiske fremstilling, pl. II, skulde der være en liten volumforøkelse, men i henhold til de specifike vegter, opført i tabel I, en liten formindskelse ved overgangen fra lav- til høltemperaturform. vandling fra kvarts til kristobalit (samt ved smeltning av kvarts) ca. 20 pct.

Ved fremstilling av silikasten maa man derfor sørge for at stenen erholder en saa stor del av sin permanente volumforøkelse som mulig under brændingen, saa at man undgaar nogen nævneværdig utvidelse under stenens anvendelse i ovnene. Desuten er det fordelagtig at den færdigbrændte sten bestaar hovedsagelig av den modifikation som har den mindste pludselige volumforandring ved α - β -punktet, nemlig tridymit. Ved saadanne volumforandringer opstaar der jo let spændinger som faar stenen til at sprække eller «skalle av«. De antydede slutninger, som er utledet av de videnskabelige resultater, bekræftes av den praktiske erfaring. Det viser sig f. eks. at den mest holdbare silikasten bestaar væsentlig av tridymit, og at en større mængde uomvandlet kvarts i stenen er skadelig.

Jernoksyder.

De problemer som knytter sig til studiet av jernoksyderne er forskjellige fra de som hittil er behandlet, da jernoksydernes egenskaper ved høie temperaturer avhænger av surstoftrykket i den atmosfære som omgir dem. Det nytter derfor ikke at undersøke disse oksyder ved almindelig ophetning i luft. Undersøkelserne maa foregaa i ovner hvor trykket kan reguleres og maales nøiagtig ved de høieste temperaturer, og det er først nylig at man har kunnet gjøre dette (Sosman og Hostetter, Geophysical Laboratory). De foreliggende resultater summeres i al korthet i det følgende.

Ferrioksyd, Fe_2O_3 . Jernoksyd er — i den form som almindeligst fremstilles kunstig — identisk med mineralet hematit (jernglans).

Ved ophetning under atmosfæretryk dissocierer det, idet surstof avspaltes og der danner sig en fast opløsning¹ som indeholder jern i ferroform. Det rene ferrioksyd har et meget høit dissociationstryk i forhold til de faste opløsninger som indeholder ferrooksyd (se pl. I). Den absolute størrelse av dis-

¹ Se anm. p. 21.

sociationstrykket avhænger av temperaturen. Ved en given temperatur synker det eftersom mængden av de ferroforbindelser som er dannet ved dissociationen tiltar i den faste opløsning. Gaar man ut fra rent Fe_2O_3 synker trykket hurtig med tiltagende FeO-mængde, senere langsomt indtil sammensætningen nærmer sig Fe_3O_4 , da det igjen synker meget raskt. (Dissociationstrykket av Fe_3O_4 er ca. 0,005 mm. ved 1 100° og ca. 0,04 mm. ved 1 200°).

Det fremgaar av de nævnte forhold at jernoksyd ikke kan smeltes uten under surstoftryk som er høit nok til at hindre dissociation. Dette smeltepunkts tryk og temperatur er endnu ikke bestemt.

Jernoksydet har et skarpt, reversibelt omvandlingspunkt ved 678°. Omvandlingen karakteriseres ved varmeabsorption og et pludselig fald i magnetisk susceptibilitet naar omvandlingspunktet passeres under temperaturstigning. Der er ogsaa observert et lignende omvandlingspunkt ved en meget lav temperatur, $\div 40^{\circ}$.

I ren tilstand er det almindelig forekommende jernoksyd (hematit) paramagnetisk, men naar det indeholder tilblandinger av FeO, eventuelt Fe_sO_4 , i fast opløsning blir det mere eller mindre ferromagnetisk som magnetit.

Ved forsigtig oksydation av fældt magnetit har man dog ogsaa fremstillet kunstig en modifikation av rent Fe_2O_3 som er omtrent likesaa magnetisk som magnetit og har det samme omvandlingspunkt (ved ca. 500°) som denne. Ved ophetning til 750° mister det pludselig sin magnetiske karakter og gaar over til almindelig jernoksyd.

Ferroferrioksyd. Fe_3O_4 mineralet magnetit, smelter i luften skarpt og uten spaltning ved 1580° . Den tyndflytende smelte krystalliserer ved avkjøling til normal magnetit.

Ved lave surstoftryk og høie temperaturer spaltes magnetit, idet surstof avgives og der blir igjen en blanding av oksyder hvis sande natur endnu ikke er bestemt.

Magnetit har et skarpt, reversibelt omvandlingspunkt ved ca. 530°, hvor det ved ophetning gaar over fra en ferromagnetisk til en paramagnetisk tilstand.

> NORGES STATSPANER HOVEDSIVER

Norges Geol. Unders. Nr. 101.

-17 -

Efter Sosman's opfatning er der en kontinuerlig række av faste opløsninger mellem rent Fe_2O_3 og Fe_3O_4 . Blandingsleddene er identificert kemisk, optisk og magnetisk saavel i kunstige præparater som i naturlige mineraler.

Ferrooksyd. FeO (Jernoksydul) har endnu ingen kunnet fremstille i ren tilstand. Man har rigtignok faat frem stoffer hvis totale sammensætning er meget nær FeO, men de har vist sig at bestaa av blandinger hvori indgaar metallisk jern og et oksyd av sammensætning mellem FeO og Fe_3O_4 .

Tokomponentsystemer.

De 6 oksyder som er behandlet i det foregaaende kan ialt danne 15 forskjellige tokomponentsystemer. Av disse er 6 nogenlunde fuldstændig og 2 delvis undersøkt, mens 7 er praktisk talt ubearbeidet.

De vigtigste data vedrørende de kjendte systemer er meddelt i tab. II og III og grafisk i pl. I og II.

Systemet MgO-CaO.

Blandinger av magnesia og kalk repræsenterer den enkleste type av tokomponentsystemer som overhodet kan forekomme.

En hvilkensomhelst saadan blanding vil ved ophetning begynde at smelte ved en temperatur av ca. 2300°. Smelten vil ha den konstante, *eutektiske* sammensætning (CaO 67, MgO 33, i vegts pct.) og temperatur indtil hele den saaledes sammensatte del av blandingen er smeltet og den usmeltede del altsaa bestaar av den komponent, som er i overskud over den eutektiske sammensætning. Ved fortsat varmetilførsel vil denne komponent smelte under temperaturstigning og gradvis forandring av smeltens sammensætning indtil smelten — i det øieblik den sidste rest av krystaller forsvinder — har den oprindelige blandings sammensætning. Den temperatur hvor denne sidste smeltning av en komponent finder sted er for alle blandingers vedkommende lavere end den rene komponents smeltepunkt, og »smeltepunktnedsættelsen«, som naar sit maksimum ved den eutektiske sammensætning, er større jo mere av den anden komponent der findes i blandingen¹.

Ved avkjøling av en smelte vil nøiagtig det omvendte av hvad der foregaar ved ophetning finde sted, forutsat at avkjølingen foregaar tilstrækkelig langsomt til at kemisk likevegt kan opnaaes hvert øieblik. Den komponent som er i overskud over den eutektiske sammensætning vil begynde at krystallisere saasnart smeltekurvens temperatur for vedkommende blanding er naadd, og krystallisationen av denne komponent vil fortsætte under avkjøling indtil smelten har den eutektiske temperatur og sammensætning. Den videre krystallisation vil foregaa eutektisk ved konstant temperatur og sammensætning av smelten, idet de to komponenter krystalliserer samtidig i det eutektiske blandingsforhold.

Blandinger av kalk og magnesia opstaar naar de naturlig forekommende karbonatbergarter som indeholder disse komponenter »brændes«. Forutsat at brændingen foregaar ved tilstrækkelig høi temperatur og varer længe nok vil kulsyren drives helt ut av karbonaterne (»dødbrænding«), og der blir tilbake en blanding av oksyder. Saaledes blir dolomit, som er et homogent mineral (MgCa(CO₃)₂), ved brænding spaltet i en heterogen blanding av kalk og magnesia av sammensætning (i vegts pet.) CaO 58,2, MgO 41,8. Denne blanding vil indeholde ca. 87 pet. CaO-MgO-eutektikum og ca. 13 pet. MgO i overskud over den eutektiske sammensætning. Ren, brændt dolomit har følgelig et ganske utpræget «smeltepunkt« ved den eutektiske temperatur, ca. 2 300°.

Systemet Al₂O₃-SiO₂.

I systemet lerjord-kiselsyre forekommer der en kemisk forbindelse mellem komponenterne, nemlig Al₂O₃·SiO₂ sillimanit. Dette er den eneste kunstig fremstillede form av lerjordsilikat, men i naturen kjendes to andre former, mineralerne cyanit og andalusit, som synes at være monotrope i forhold til sillimanit.

¹ De kurver, som i diagrammet forbinder det eutektiske punkt med de to komponenters smeltepunkter angir de øverste «smeltepunkter« for samtlige blandinger og benævnes derfor smeltekurver eller *liquiduskurver*.

Sillimanit smelter (ved 1816°) kongruent, d. v. s. uten at spaltes, og smelten har altsaa samme sammensætning som den krystalliserte fase. Systemet Al_2O_3 -SiO₂ kan derfor betragtes som sammensat av to enkle systemer, SiO_2 - $Al_2O_3 \cdot SiO_2$ og $Al_2O_3 \cdot SiO_2$ - Al_2O_3 , med hvert sit eutektikum, altsaa begge av samme type som systemet CaO-MgO.

Alle krystalliserte blandinger av SiO_2 og Al_2O_3 som holder mellem 100 og 62,9 pct. SiO_2 (0-37,1 pct. Al_2O_3) vil, naar likevegt er opnaadd, bestaa av sillimanit og kristobalit. Sammensætning og temperatur av det eutektiske punkt for disse blandinger fremgaar av tab. III og pl. II.

Blandinger som holder mellem 62,9 og 0 pct. SiO_2 (37,1 og 100 pct. Al_2O_8) krystalliserer som sillimanit og korund. Eutektikum for disse blandinger ligger, som det sees, meget nær sillimanit baade i smeltetemperatur og sammensætning. Saadanne blandinger smelter derfor praktisk talt paa den maate at al sillimanit smelter først — ved en konstant temperatur av ca. 1810° — og dernæst smelter korund under gradvis temperaturstigning indtil smeltens sammensætning falder sammen med den oprindelige blandings.

Systemet Al_2O_3 —SiO₂ indbefatter brændt kaolin og blandinger av kaolin og Al_2O_3 eller SiO₂. Ren kaolin, som har tilnærmelsesvis sammensætningen $H_2O \cdot Al_2O_3 \cdot 2SiO_2$, gir jo ved brænding, saafremt likevegt opnaaes, en blanding av sillimanit og kristobalit omtrent svarende til $Al_2O_3 \cdot 2SiO_2$.

I en masse som bestaar av kaolin tilsat Al_2O_3 , saa den totale sammensætning blir omtrent $Al_2O_3 \cdot SiO_2$, vil der ved rigtig brænding krystallisere ut sillimanit i form av tæt sammenfiltrede naaler. Dette produkt har foruten en betydelig ildfasthet ogsaa adskillig mekanisk holdbarhet selv ved høie temperaturer. Det danner hovedbestanddelen i »ildfast porcelæn« (Marquard masse), som har en utstrakt anvendelse i den pyrometriske teknik.

Idetheletat kan man si at tilstedeværelsen av krystallisert sillimanit er et av de specielle kjendetegn paa et ildfast lerprodukt. Hvis sillimanit forekommer i større mængder vil jo dette altid være en garanti for at produktet har opnaadd en viss grad av kemisk likevegt og at det saaledes skulde være stabilt under videre ophetning og desuten ha en høi ildfasthet. Paa den anden side vil tilstedeværelsen av større mængder frit Al_2O_8 sammen med frit SiO_2 tydelig vise at kemisk likevegt ikke kan være indtraadt, og man kan gaa ut fra at produktet vil være tilbøielig til at undergaa betydelige omvandlinger under en fortsat ophetning til høie temperaturer.

Systemet MgO-Al₂O₃.

Systemet magnesia-lerjord ligner i mange henseender det foregaaende system. Komponenterne danner en kongruent smeltende kemisk forbindelse, $MgO \cdot Al_2O_3$, spinel, og systemet kan altsaa opfattes som sammensat av de to delsystemer MgO- $MgO \cdot Al_2O_3$ og $MgO \cdot Al_2O_3-Al_2O_3$.

Ved delsystemet MgO-MgO \cdot Al₂O₃, er der intet bemerkelsesværdig. Dets forhold fremgaar med tilstrækkelig tydelighet av diagrammet pl. II og av tab. III.

I det andet delsystem, som omfatter blandinger av MgO \cdot Al₂O₃ og Al₂O₃, er forholdene derimot ikke saa enkle, og de kan endnu ikke sies at være helt opklaret. Forviklingerne opstaar fordi Al₂O₃, som tidligere omtalt, kan optræde i to krystalliserte former, α -Al₂O₃ (korund) og β -Al₂O₃. Den sidstnævnte synes at være monotrop i forhold til α -formen, og de to formers blandingssystemer med MgO \cdot Al₂O₃ er noget forskjellige. Det er endnu ikke fastslaat under hvilke betingelser det ene eller det andet av de to systemer opstaar.

Det synes at fremgaa av de foreliggende data, at MgO·Al₂O₃ danner en næsten fuldstændig række av faste opløsninger¹ med

En fast opløsning x av de to rene komponenter A og B, hvis smeltepunkter er henholdsvis T_A og T_B , vil begynde at smelte ved temperaturen s₁ og den første uendelig lille mængde smelte som dannes, vil ha sammensætningen 1₁. Ved fortsat ophetning vil smeltens sammensæt-

¹ En fast opløsning er en homogen, krystallisert blanding av to eller flere komponenter eller forbindelser. Betingelsen for at krystalliserte substanser skal kunne blande sig med hinanden i nogen større utstrækning er at de staar hinanden nær krystallografisk og kemisk.

Som velkjendte eksempler paa substanser hvis krystaller blander sig i alle forhold — altsaa danner kontinuerlige rækker av faste opløsninger — kan nævnes systemet Pt—Au fra metallografien og systemet NaAlSi₃O₈ (albit) — CaAl₂Si₂O₈ (anortit) fra mineralogien. Begge disse systemer er av den nedenfor antydede type (fig. 1).

 α -Al₂O₈, korund (i diagrammet fremstillet ved de optrukne kurver). Der er et brudd i rækken nær Al₂O₈ og et eutektikum hvor der ved ca. 1925° er likevegt mellem en smelte av sammensætning Al₂O₈ 98, MgO 2 (vegts pct.) og to faste faser, nemlig α -Al₂O₈ og en fast opløsning av MgO·Al₂O₈ og Al₂O₈.

Den anden form, β -Al₂O₈, optar en ubetydelig mængde MgO·Al₂O₈ i fast opløsning, men forøvrig synes den ikke at indgaa i nogen række av faste opløsninger. Eutektikum β -Al₂O₈

ning forandres langs $T_A l_1 l_2 T_B$, *liquiduskurven*, og krystallernes (den faste opløsnings) langs $T_A s_1 s_2 T_B$, *soliduskurven*. Naar smelten, ved punktet l_2 har faat den oprindelige faste opløsnings sammensætning er

smeltningen avsluttet, og den sidste lille rest av krystaller som smelter har sammensætningen s₂.

En fast opløsning i et system av den betragtede type vil altsaa aldrig ha noget smeltepunkt, men derimot et smelteinterval, s₁ l₂, som kan variere inden vide grænser og ofte strække sig over flere hundrede grader.

For at smeltningen av en fast opløsning skal foregaa paa den antydede maate, maa der hvert øieblik herske likevegt mellem en homogen smelte paa den ene side og

homogent sammensatte krystaller (fast opløsning) paa den anden. Da saavel smelten som den faste opløsning forandrer sammensætning med temperaturen, maa der altsaa under smelteperioden foregaa en uophørlig diffusion som omfatter hele smelten og likeledes trænger ind til det inderste av krystallerne.

Det her avbildede diagram repræsenterer kun en av de mange typer av systemer med faste opløsninger som forekommer. I fig. 4 er f. eks. gjengit en type med et temperaturminimum hvor solidus- og liquiduskurverne falder sammen i et punkt. I andre typer kan de krystalliserte substanser kun blande sig inden visse grænser og der er saaledes ingen ubrutt række av faste opløsninger. Saadanne begrænsede faste opløsninger forekommer i flere av de her behandlede to- og trekomponentsystemer. — MgO Al_2O_8 ligger ved Al_2O_8 92, MgO 8 — 1925° (diagram mets prikkede kurver).

Et blik paa diagrammet viser at ingen ren blanding av MgO og Al_2O_3 smelter ved lavere temperatur end ca. 1925°. Alle saadanne blandinger vil altsaa være tilstrækkelig ildfaste for de fleste praktiske øiemed. Blandinger som bestaar hoved-sagelig av MgO Al_2O_3 , spinel, har været prøvet i praksis. De danner et neutralt ildfast produkt av betydelig kemisk og mekanisk stabilitet.

Systemet MgO-SiO2.

Systemet magnesia-kiselsyre har to kemiske forbindelser, nemlig 2 MgO·SiO₂, forsterit og MgO·SiO₂, klinoenstatit.

Forsterit, som er den eneste kjendte modifikation av $2MgO \cdot SiO_2$, smelter kongruent (ved 1890°) og danner med MgO et eutektikum hvis relationer fremgaar av tab. III og pl. II.

MgO·SiO₂ danner flere modifikationer, men kun den nævnte klinoenstatit er stabil, mens de øvrige er monotrope i forhold til denne.

Klinoenstatit har intet kongruent smeltepunkt, men spaltes ved ophetning til 1557° i krystaller av forsterit og en smelte av sammensætning MgO 39, SiO₂ 61 (reaktionspunktet)¹. Naar denne *inkongruente* smeltning er tilendebragt, vil den nydannede forsterit ved fortsat ophetning smelte gradvis under temperaturstigning og forandring av smeltens sammensætning. Ved 1577°

I de fleste av de her behandlede tilfælde spiller dampfasen og trykket underordnede roller (undtagen for jernoksyderne) og de er derfor stiltiende sat ut av betragtning.

¹ Reaktionspunkter (dissociationspunkter) og eutektika benævnes invariante punkter, fordi de repræsenterer en likevegtstilstand mellem forskjellige faser som kun kan bestaa under ganske bestemte betingelser. I de hittil betragtede tilfælde er der to krystalliserte faser, en smelte og en dampfase som er i likevegt ved en bestemt temperatur, en bestemt sammensætning av smelten (koncentration) og et bestemt tryk. Siden der altsaa i tokomponentsystemer kan være 4 faser indbefattet i likevegten, benævnes saadanne punkter ogsaa kvadrupelpunkter. (De tilsvarende punkter i trekomponentsystemer benævnes kvintupelpunkter, fordi der ved disse kan bestaa 5 faser under ganske bestemte betingelser).

er al forsterit smeltet og i samme øieblik har smelten sammensætningen MgO·SiO₂. Ved avkjøling av en saadan smelte finder — under likevegtsbetingelser — det omvendte sted. En homogen smelte av sammensætningen MgO·SiO₂ vil altsaa ved 1577° begynde at utskille krystaller av $2 \text{ MgO} \cdot \text{SiO}_2$ (forsterit) og fortsætter dermed indtil smelten har faat det ovenfor nævnte reaktionspunkts sammensætning og temperatur (MgO 39, SiO₂ 61, 1557°). Den utskilte forsterit vil da, ved konstant temperatur og sammensætning av smelten, igjen opløses, idet den kombinerer sig med en del av smelten og danner klinoenstatit, som samtidig krystalliserer ut. Denne reaktion foregaar indtil al forsterit og smelte samtidig er opbrukt og det hele har krystallisert til klinoenstatit.

I alle blandinger, hvis sammensætning ligger mellem forsteritens og reaktionspunktets (altsaa mellem MgO 57,2, SiO, 42,8 og MgO 39, SiO₂ 61), vil reaktionspunktet passeres saavel under ophetning som under avkjøling, og de samme reaktioner som er beskrevet for klinoenstatit vil finde sted. Naar disse blandinger ophetes vil de altsaa efter reaktionen ved 1557° bestaa av forsterit og smelte av reaktionspunktets sammensætning. Mængden av forsterit vil imidlertid variere fra 0 pct. for en blanding av reaktionspunktets sammensætning til 100 pct, for ren forsterit, og temperaturen for den sidste smeltning av forsterit vil variere overensstemmende med forsteritens smeltekurve fra 1557° til 1890°. Ved avkjøling av en saadan smelte vil den utkrystalliserte forsterit naar dissociationspunktet naaes kombinere sig med smelte under krystallisation av klinoenstatit. For blandinger av sammensætning mellem forsterit og klinoenstatit (MgO 57,2-MgO 40,1) vil naar reaktionen er endt al smelte være opbrukt, mens der er forsterit tilovers og den krystalliserte blanding bestaar altsaa av forsterit og klinoenstatit. For den lille serie av blandinger som ligger mellem klinoenstatitens og dissociationspunktets sammensætning (MgO 40,1-MgO 39) vil reaktionen forløpe saaledes at der er smelte tilovers naar al forsterit er opbrukt og den videre krystallisation av klinoenstatit vil foregaa under temperaturfald og forandring av smeltens sammensætning indtil eutektikum klinoenstatit-kristobalit naaes.

I blandinger som holder mindre end 39 pct. MgO vil klinoenstatit og kristobalit være de eneste optrædende krystalliserte faser som kan bestaa i likevegt med smelte. Disse blandingers forhold fremgaar av diagrammet pl. II og av tab. III.

Det sees at blandinger av MgO og SiO₂ som holder mere end 57 pct. MgO ikke vil begynde at smelte førend ved ca. 1850° , og saadanne blandinger er altsaa ildfaste nok for de fleste praktiske øiemed. Magnesitsten kan saaledes, hvis den ikke indeholder andre fremmede substanser, være ganske betragtelig forurenset med kiselsyre uten at dette behøver at ødelægge dens egenskaper som ildfast sten. Kiselsyren maa da naturligvis være bundet i forsterit og ikke være tilstede som frit SiO₂.

Blandinger som holder mindre end 57 pct. MgO vil som det sees begynde at smelte allerede ved ca. 1550°, og for manges vedkommende vil smeltningen være helt avsluttet ved temperaturer som kun er litt høiere. Disse blandinger vil altsaa være uskikket for fremstilling av ildfaste materialer.

Systemet CaO-Al₂O₃.

I systemet kalk-lerjord er der fire kemiske forbindelser, hvorav tre har kongruente smeltepunkter og en et inkongruent smeltepunkt. Av de fem kvadrupelpunkter er fire eutektika og et dissociationspunkt.

Forbindelsernes og kvadrupelpunkternes egenskaper fremgaar av diagrammet pl. II og av tab. III.

Det sees at hver av de to forbindelser $5 \operatorname{CaO} \cdot 3 \operatorname{Al}_2 O_3$ og $3 \operatorname{CaO} \cdot 5 \operatorname{Al}_2 O_3$ optræder i en stabil og en ustabil (monotrop) modifikation. De nøiagtige betingelser for dannelsen av de ustabile former er ikke kjendt.

Det nævnte dissociationspunkt er av nøiagtig samme art, som det der er omtalt for systemet $MgO-SiO_2$. Den dissocierende forbindelse er $3 CaO \cdot Al_2O_3$, som ved ophetning til 1535° spaltes i CaO og en smelte av sammensætning CaO 59, Al_2O_3 41.

Den største del av blandingerne i dette system smelter ved for lave temperaturer til at de kan ha nogen anvendelse som ildfaste stoffer. Kun blandinger som holder mellem 75,2 og 100 pct. Al_2O_8 begynder først at smelte ved 1700°, og disse blandinger kunde altsaa tænkes at ha en begrænset anvendelse.

Systemet CaO-SiO₂.

Systemet kalk-kiselsyre har fire forbindelser, hvorav to smelter kongruent, en smelter inkongruent og den fjerde overhodet ikke smelter, men spaltes ved ophetning i to krystalliserte komponenter. Av de fire kvadrupelpunkter er tre eutektika og et reaktionspunkt.

Systemets almindelige relationer fremgaar av diagrammet pl. II og av tab. III.

Forbindelsen CaO·SiO₂ optræder i to enantiotrope former, β -CaO·SiO₂, wollastonit og α -CaO·SiO₂, pseudowollastonit. Det reversible omvandlingspunkt mellem disse ligger ved 1 200° for den rene forbindelses vedkommende. Pseudowollastonit kan imidlertid opta indtil 2 pct. SiO₂ og indtil 2 pct. CaO i fast opløsning, hvorved omvandlingspunktet forandres litt, idet SiO₂ forhøier det til 1 210° og CaO nedsætter det til 1 190°. Omvandlingen mellem de to former karakteriseres væsentlig ved optiske og krystallografiske forandringer og ledsages ikke av nogen nævneværdig volumforandring. Det er karakteristisk at ogsaa smeltningen av α -CaO·SiO₂ (ved 1 540°) foregaar med en ubetydelig volumforøkelse.

Den inkongruent smeltende forbindelse $3 \operatorname{CaO} \cdot 2 \operatorname{SiO}_2$ spaltes ved ophetning til 1475° i krystaller av $2 \operatorname{CaO} \cdot \operatorname{SiO}_2$ og smelte av sammensætning CaO 55,2, SiO, 44,5 (reaktionspunktet).

Forbindelsen 2 CaO \cdot SiO₂ optræder i tre enantiotrope modifikationer, α -, β - og γ -formerne, hvis egenskaper og relationer fremgaar av tab. II og III. Omvandlingen mellem α - og β -formerne foregaar skarpt ved 1 420° og er væsentlig paavist termisk, idet de to former staar hinanden meget nær i optiske egenskaper og der kun er en ubetydelig volumforandring ved omvandlingen. Derimot ledsages den reversible omvandling mellem β - og γ -formerne ved 675° av betydelige forandringer i de optiske egenskaper og av en volumforøkelse (ved overgang til lavtemperatur, γ -formen) paa ca. 10 pct. Ved denne pludselige utvidelse smulDe eneste blandinger i dette system som har høie smeltetemperaturer er de som holder mere CaO end forbindelsen $2 \text{ CaO} \cdot \text{SiO}_2$, altsaa mere end 65 pct. CaO, hvor ingen smeltning foregaar ved lavere temperatur end 2065° . I alle disse blandinger optræder imidlertid mere eller mindre av krystallisert $2 \text{ CaO} \cdot \text{SiO}_2$ som ledsages av den nævnte utvidelse og »støvning« naar omvandlingspunktet ved 675° passeres under avkjølingen. Det vilde derfor være umulig at forarbeide, holdbare, volumfaste gjenstande av saadanne blandinger. Desuten er ogsaa disse blandinger litet bestandige fordi de »læskes« under indflydelse av luftens fugtighet.

Blandinger av CaO og SiO, egner sig altsaa idetheletat ikke til fremstilling av ildfaste materialer. En tilsyneladende undtagelse danner enkelte varieteter av silikasten som indeholder indtil 2 pct, CaO. Denne lille mængde CaO vil imidlertid ikke gjøre nogen skade hvis den er jevnt fordelt, idet den kun foraarsaker dannelsen av litt kalksilikat, CaO·SiO., I kontakt med frit SiO., smelter dette silikat rigtignok allerede ved 1436°, men denne eutektiske smelte er kiselsyrerik (63 pct SiO2) og mængden av SiO, forøkes eftersom temperaturen stiger. Resultatet er altsaa at der ved brænding av en saadan kalkholdig silikasten ved tilstrækkelig høi temperatur vil dannes en liten mængde seig, kiselsvrerik smelte, som ikke ødelægger stenens sammenhæng, men kun siger ind i porerne mellem SiO₂ bestanddelene, hvor den efter avkjøling virker som bindemiddel og under brændingen desuten som et flussmiddel der paaskynder omvandlingen av kvarts til tridymit. Ved krystallisation av en saadan kiselsyrerik smelte vil der opstaa en blanding av overveiende tridymit (muligens ogsaa kristobalit) med en liten mængde CaO·SiO2. Da dette silikat ikke undergaar nogen pludselige volumforandringer ved ophetning eller avkjøling, kan dets tilstedeværelse ikke være skadelig, og dets funktion som bindemiddel maa iethvertfald antages at være nyttig.

Systemet CaO-Fe₂O₃.

Systemet kalk-jernoksyd er hittil kun foreløbig undersøkt (Sosman og Merwin). Dets vigtigste relationer er fremstillet i diagrammet pl. I.

Ingen av de optrædende forbindelser har, som det sees, noget kongruent smeltepunkt. De inkongruente smeltepunkter er 1436° for $2 \text{ CaO} \cdot \text{Fe}_2\text{O}_3$ og 1216° for $\text{CaO} \cdot \text{Fe}_2\text{O}_3$. Eutektikum $\text{CaO} \text{Fe}_2\text{O}_3 - \text{Fe}_2\text{O}_3$ ligger ved 1203° og har antagelig en sammensætning i vegts pct. av omkring CaO 10, Fe_2O_3 90.

I smelter som er rike paa Fe_2O_3 (smelter mellem 0 og ca. 30 vegts pct. CaO) er der ved høie temperaturer en betragtelig dissociation av Fe_2O_3 under dannelse av ferroforbindelser. Den rigtige bestemmelse av saadanne smelters relationer kan derfor først foregaa under et surstoftryk som er høit nok til at hindre dissociation. Saadanne undersøkelser har endnu ikke været foretat.

Trekomponentsystemer.

Likevegtsdiagrammer.

Faserelationerne i trekomponentsystemer anskueliggjøres ved hjælp av rumdiagrammer hvor sammensætningerne angives av punkter indenfor et likesidet triangel og temperaturerne av perpendikulærer paa triangelflaten. Et saadant diagram danner altsaa et prisme, hvis grundflate er sammensætningstriangelet med de tre komponenter som hjørner og hvis sideflater er tre tokomponentdiagrammer. Opad begrænses prismet av en række krumme flater eller *felter* som støter sammen i rumkurver, grænsekurver. Tilsammen danner disse felter vedkommende systems *liquidusflate*. Hvert enkelt felt angir sammensætningerne av alle de smelter hvorfra en bestemt fase vil begynde at krystallisere ved avkjøling til liquidusflatens temperaturer for de respektive sammensætninger eller hvor den sidste rest som smelter ved ophetning vil bestaa av vedkommende fase.

En model av et trekomponentdiagram (for systemet CaO- Al_2O_3 -SiO₂) er avbildet i fig. 2. Det samme diagram er ogsaa gjengit i fig. 3¹, som er et topografisk kart av rumdiagrammet

¹ Begge fig. efter Rankin & Wright, Amer. Journ. Science (4), 39, 1, (1915).

projecert paa sammensætningstriangelets flate. I projektionen er liquidusflatens temperaturer fremstillet ved isotermiske kurver.

- 29 -

De punkter hvori tre grænsekurver møtes er *kvintupelpunkter*. Ved den temperatur som et saadant punkt bestemmer kan altsaa samtidig tre krystalliserte faser i et hvilketsomhelst

mængdeforhold bestaa i likevegt med en smelte av den sammensætning som ogsaa repræsenteres av punktet. Der er tre typer av kvintupelpunkter karakterisert ved den maate, hvorpaa de tre grænsekurver møtes og det skema for faseomsætningen varmetilførsel ved som avhænger derav. Ved den første type, det ternære eutektikum. falder alle grænsekurver mot punktet og faseomsætningen foregaar paa samme maate

Fig. 2.

som ved de tidligere omtalte binære eutektika med den forskjel som betinges av at tre istedenfor to krystalliserte faser deltar i omsætningerne. Ved den anden type danner grænsekurverne en saakaldt opadvendt gaffelgrening med to kurver som helder mot og en som helder fra punktet. Den tredie type har en nedadvendt gaffelgrening med en kurve heldende mot og to fra punktet. Ved begge disse typer foregaar faseomsætningen saaledes at en krystallisert fase helt eller delvis fortæres, mens de to andre krystalliserer eller omvendt. Disse to typer kan derfor passende betegnes som *ternære reaktionspunkter*. Faseomsætningen langs grænsekurverne kan foregaa paa forskjellige maater. Langs de kurver som svarer til binære eutektika og ofte utgaar fra disse, foregaar der en samtidig smeltning av begge krystalliserte faser ved ophetning. Saadanne kurver benævnes derfor *smelte- eller krystallisationskurver*. Langs

kurver av den anden type vil ved ophetning den ene fase smelte og den anden krystallisere. Disse kurver svarer altsaa til binære reaktionspunkter og kan benævnes *reaktionskurver*. Den førstnævnte type er almindeligst i de her behandlede systemer. Reaktionskurver forekommer dog ogsaa ofte.

En ternær forbindelse, hvis sammensætningspunkt ligger indenfor det felt som repræsenterer forbindelsen, har et kongruent smeltepunkt. Ligger punktet derimot utenfor feltet, smelter forbindelsen inkongruent og enhver blanding hvori den forekommer vil ved ophetning passere det reaktionspunkt som repræsenterer denne smeltning.

I pl. I og II er de ternære diagrammer reproducert i en noget forenklet form med uteladelse av de isotermiske kurver. De paaførte temperaturer for kvintupelpunkterne gir dog sammen med grænsekurverne et begrep om liquidusflatens form, og diagrammerne skulde være tilstrækkelige for en orientering over de vigtigste faserelationer.

Systemet CaO-MgO-Al₂O₃.

Komponenterne CaO, MgO og Al₂O₃ danner ingen ternære forbindelser. Der optræder altsaa kun de samme krystalliserte faser som i de tre tokomponentsystemer hvorav trekomponentsystemet omsluttes.

Av de seks forekommende kvintupelpunkter er to ternære eutektika og fire ternære reaktionspunkter.

I det følgende gives et par eksempler paa disse ternære blandingers forhold under ophetning.

Blandinger som ligger indenfor det tænkte triangel CaO, MgO, $3 \operatorname{CaO} \cdot \operatorname{Al}_9 \operatorname{O}_3$ vil — naar de har krystallisert under likevegt — bestaa av de tre nævnte forbindelser. Den første del av smeltningen foregaar ved en konstant temperatur av 1450° , idet der dannes en smelte av reaktionspunktets sammensætning, CaO 51,5, MgO 6,2, Al₂O₃ 43,3. Herunder vil MgO og $3 \operatorname{CaO} \cdot \operatorname{Al}_9 \operatorname{O}_3$ smelte og CaO krystallisere indtil en av de to førstnævnte er helt fortæret.

Har blandingen et overskud av MgO i forhold til reaktionspunktets sammensætning, saa vil altsaa al $3 \operatorname{CaO} \cdot \operatorname{Al}_2 O_3$ være helt opbrukt naar reaktionen er endt. Ved videre ophetning vil da CaO og MgO smelte samtidig, idet smeltens temperatur og sammensætning forandres gradvis langs grænsekurven for de to faser — i dette tilfælde en smeltekurve. Naar saa den ene av disse faser ogsaa er helt forsvundet vil smeltens temperatur og sammensætning forandres langs en plan kurve (en ret linje i projektionen) som gaar gjennem den gjenværende krystalliserte fases og den oprindelige blandings sammensætningspunkter indtil det sidstnævnte punkt naaes og alt er smeltet. Hvis reaktionspunktet er passert (under ophetning) med et overskud av $3 \operatorname{CaO} \cdot \operatorname{Al}_2\operatorname{O}_3$, og altsaa al MgO er helt smeltet, vil en fortsat ophetning bevirke at $3 \operatorname{CaO} \cdot \operatorname{Al}_2\operatorname{O}_3$ fremdeles smelter og CaO krystalliserer, idet temperatur og sammensætning av smelten forandres langs grænsekurven for de to faser — i dette tilfælde en reaktionskurve — indtil al $3 \operatorname{CaO} \cdot \operatorname{Al}_2\operatorname{O}_3$ har smeltet og CaO i samme øieblik ogsaa begynder at smelte. Temperatur og sammensætning av smelten forandres da langs en kurve (ret linje) som gaar gjennem CaO-punktet og den oprindelige blandings sammensætningspunkt indtil al CaO har smeltet.

Det fremgaar av diagrammet, at de fleste av de blandinger som ligger indenfor det betragtede triangel vil følge det førstnævnte skema med samtidig smeltning av CaO og MgO efter at reaktionspunktet er passert.

Ved brænding av dolomit som holder nogen faa pct. Al_oO_a, men forøvrig er ren, vil der saaledes ved 1450° dannes en liten mængde smelte av det nævnte reaktionspunkts sammensætning. Resten bestaar da av en krystallisert blanding av CaO og MgO (noget rikere paa MgO end den oprindelige blanding). Den lille mængde smelte virker som binde- og flussmiddel og vil foraarsage at Al_aO_a-holdig dolomit kan »sintres« ved 1450° uten at ildfastheten - som avhænger av smelteintervallet for CaO-MgO-blandingen - nedsættes under den ønskelige høide. Forbindelsen 3 CaO · Al_oO_a - som krystalliserer i smaa mængder ved avkjølingen - har intet omvandlingspunkt med pludselig volumforandring. Denne forbindelses tilstedeværelse i brændt dolomit er saaledes ikke skadelig. En liten mængde Al₂O₃ vil altsaa ikke ødelægge dolomiten som ildfast materiale, men tvertimot være gavnlig. Absolut ren dolomit kan ikke sintres uten muligens ved meget høie temperaturer hvorved brændingen vilde bli uøkonomisk.

Blandinger av CaO, MgO og Al₂O₃ som ligger indenfor triangelet MgO, 3 CaO·Al₂O₃, 5 CaO·3 Al₂O₃ har de nævnte forbindelser som krystalliserte faser og vil begynde at smelte ved det ternære eutektikum hvor disse faser er i likevegt med en smelte av sammensætning CaO 46, MgO 6,3, Al₂O₃ 47,7 ved 1 345[±]. Smeltningens videre forløp efter at eutektikum er passert avhænger naturligvis av den oprindelige blandings sammensætning,

d. v. s. av hvilke bestanddele er i overvegt over den eutektiske sammensætning. For endel blandingers vedkommende vil det ovenfor beskrevne reaktionspunkt ved 1 450° gjennemløpes under smelteperioden, og der vil herunder utkrystallisere CaO, som senere atter smelter. Andre blandinger vil smelte uten at reaktionspunktet passeres, og alt vil idetheletat forløpe som om der forelaa et trekomponentsystem av aller simpleste type, hvor de tre nævnte forbindelser er baade komponenter og eneste optrædende krystalliserte faser.

Systemet CaO-Al₂O₃-SiO₂.

Komponenterne CaO, Al2O3 og SiO2 danner to kongruent smeltende, ternære forbindelser nemlig CaO · Al₂O₃ · 2 SiO₂, anortit og 2 CaO · Al₂O₃ · SiO₂, gehlenit.

I dette system forekommer alle de forskjellige typer av grænsekurver og kvintupelpunkter som er antydet i det foregaaende. Av de 20 kvintupelpunkter er 8 ternære eutektika og 7 reaktionspunkter, hvorav et med nedadvendt og seks med opadvendt gaffelgrening, og 5 omvandlingspunkter, hvor 2 av de 3 optrædende krystalliserte faser er enantiotrope modifikationer av samme forbindelse.

Det sees av diagrammet at triangelet CaO, 3 CaO · SiO2, 3 CaO · Al₂O₃ ligger helt indenfor stabilitetsfeltet for CaO. I blandinger av de tre nævnte forbindelser vil altsaa CaO altid være den sidste fase som smelter helt ved ophetning og den første som krystalliserer ved avkjøling. Dette forhold hænger sammen med at ingen av de to andre forbindelser har noget kongruent smeltepunkt. 3 CaO · Al₂O₈ spaltes saaledes ved 1 535° i CaO og smelte av sammensætning CaO 59, Al₂O₈ 41 (binært reaktionspunkt) og 3 CaO·SiO₂ spaltes ved 1900° uten smeltning i en blanding av CaO og α-2 CaO·SiO.

Spaltningen av 3 CaO · SiO, ved 1900° bevirker at denne forbindelse, som tidligere omtalt, ikke kan bestaa i likevegt med smelte i systemet CaO-SiO2, da liquiduskurvens laveste punkt i dette omraade av systemet er ved 2065° (eutektikum CaO-2 CaO · SiO₂). I ternære blandinger, hvis liquiduspunkter ligger under 1900°, vil derimot forbindelsen kunne være i likevegt med smelter. Det sees da ogsaa at der er et smalt triangel-8 .

> NORGES STATSBANER HOVEDSIYRET

Norges Geolog. Unders. Nr. 101

-33 -

formet stabilitetsfelt for $3 \text{ CaO} \cdot \text{SiO}_2$ som strækker sig fra 1900° , hvor der er et reaktionspunkt med nedadvendt gaffelgrening, til 1470° og 1455° , hvor der er to reaktionspunkter med opadvendt gaffelgrening.

Alle blandinger av CaO, 3 CaO · SiO2 og 3 CaO · Al2O2 som har krystallisert under likevegt vil ved ophetning begynde at smelte ved 1470°, idet der foregaar en reaktion som bestaar i krystallisation av CaO paa bekostning av de to andre forbindelser som samtidig fortæres helt eller delvis under dannelse av en smelte av sammensætning CaO 59,7, Al₂O₂ 32,8, SiO₂ 7,5. Faseomsætningen ved fortsat varmetilførsel kan naturligvis foregaa efter forskjellige skemaer alt efter blandingens totalsammensætning. I en del Al₂O₃-fattige blandinger gjennemgaar f. eks. CaO flere perioder av krystallisation og smeltning under blandingernes «smelteperioder«, uten at den dog nogengang forsvinder helt førend liquiduspunktet for vedkommende blanding er naadd. Efterat en saadan blanding har passert det ternære reaktionspunkt (1470°) og CaO har krystallisert, vil saaledes fortsat varmetilførsel bringe den til at smelte sammen med 3 CaO SiO, under temperaturstigning indtil smeltens temperatur og sammensætning er uttrykt ved berøringspunktet for den tangent til grænsekurven som gaar gjennem sammensætningspunktet for 3 CaO · SiO_a. Derefter vil videre ophetning bevirke at CaO igjen krystalliserer, mens 3 CaO · SiO₂ fortsætter at smelte indtil reaktionspunktet ved 1900° er naadd. Reaktionen ved dette punkt bestaar i fortsat krystallisation av CaO og fuldstændig smeltning av 3 CaO·SiO₂ med samtidig utkrystallisation av 2 CaO·SiO₂. Ved fortsat ophetning vil dernæst CaO og 2 CaO SiO, smelte samtidig til al a-2 CaO·SiO, er fortæret, hvorefter CaO smelter som den sidste rest, og smelten endelig faar blandingens totalsammensætning.

Disse forhold utledes uten vanskelighet av det fuldstændige diagram, hvorav det ogsaa er mulig at beregne mængden av de enkelte faser for hvert trin av smelteintervallet.

Blandinger inden triangelet $3 \text{ CaO} \cdot \text{SiO}_2$, $2 \text{ CaO} \cdot \text{SiO}_2$, $3 \text{ CaO} \cdot \text{Al}_2\text{O}_8$ vil begynde at smelte ved $1\,450^\circ$, idet der dannes en smelte av det tilsvarende kvintupelpunkts sammensætning. I smelteintervallet for saadanne blandinger kan der ogsaa fore-

komme avvekslende krystallisations- og smelteperioder for de enkelte faser. Som diagrammet viser omfatter det betragtede triangel endel av stabilitetsfeltet for CaO. Da denne fase ikke findes i det helt krystalliserte produkt, dannes den altsaa under smelteperioden paa bekostning av de andre faser.

De tre nævnte forbindelser, $3 \text{ CaO} \cdot \text{SiO}_2$, $2 \text{ CaO} \cdot \text{SiO}_2$ og $3 \text{ CaO} \cdot \text{Al}_2\text{O}_3$ utgjør hovedbestanddelene i portland cement. I cementen forekommer desuten ofte mindre mængder CaO og $5 \text{ CaO} \cdot 3 \text{ Al}_2\text{O}_3$ samt visse andre bestanddele, hvorav Fe_2O_3 , MgO og alkalier er de vigtigste.

Forbindelser av CaO, Al₂O₃ og SiO₂ utgjør i almindelighet ca. 90 pct. av cementklinkeren, og det er godtgjort at en substans med alle cementens værdifulde egenskaper kan fremstilles av rene blandinger av de tre oksyder. En saadan blanding er f. eks. CaO 68.4, Al₂O₈ 8, SiO₂ 23.6 som har meget nær samme sammensætning som det omhandlede ternære reaktionspunkt ved 1900°. Den avgjort vigtigste bestanddel er trikalciumsilikatet, 3 CaO SiO₂, hvorav god cement som regel indeholder 30-35 pct. Fabrikationen av portland cement bør altsaa foregaa saaledes at mest mulig av dette silikat faar anledning til at kry-Trikalciumsilikat dannes paa den maate at først stallisere. 2 CaO · SiO_a krystalliserer ved kombination av komponenterne, hvorefter dette silikat efterhvert - og lettest ved høie temperaturer — optar CaO og danner 3 CaO·SiO_a. En omhyggelig finmaling og blanding av bestanddelene og brænding ved høiest mulige temperaturer vil altsaa paaskynde de reaktioner, hvorved dette værdifulde silikat dannes. Disse operationer frembyr ingen større tekniske vanskeligheter, men de er kostbare og det er naturligvis ønskelig at f. eks. brændingen kan reduceres mest mulig, baade med hensyn til temperatur og varighet. Det synes at være de tilstedeværende »flussmidlers« funktion at muliggjøre en simplere brænding av cementen. Det sees av det foregaaende at allerede de rene blandinger av CaO, Al₂O₃ og SiO₂ har et »flusspunkt« ved 1455°, hvis tilstedeværelse skyldes den lille mængde Al₂O₈, som er blandet til de CaO-SiO₂-holdige bestanddele. Ved tilsætning av andre bestanddele, vil flusspunktet nedsættes, men den nøiagtige indflydelse av de forskjellige substanser er endnu ikke bestemt. Av de foreliggende data kan

det dog f. eks. forutsiges, at en delvis erstatning av Al_2O_3 med Fe_2O_3 som flussmiddel ganske sikkert vil nedsætte flusspunktet betragtelig — rimeligvis flere hundrede grader. Under virkningen av flussen, altsaa den del av cementblandingen som smelter under brændingen, vil dannelsen av den ønskelige mængde $3 \text{ CaO} \cdot \text{SiO}_2$ kunne foregaa selv ved forholdsvis lave temperaturer og ved en kortvarig brænding.

Systemet MgO-Al₂O₃-SiO₂.

Komponenterne MgO, Al_2O_3 og SiO₂ danner en inkongruent smeltende forbindelse, hvis sammensætning varierer med sammensætningen av den blanding, hvorfra den er krystallisert. Den indgaar i en serie av faste opløsninger (hvori 2 MgO · 2 $Al_2O_3 \cdot 5$ SiO₂ er hovedbestanddelen) og staar mineralet kordierit meget nær i krystallografiske og optiske egenskaper.

Denne ternære forbindelse optræder i to former, en stabil α -form og en ustabil μ -form. Den ustabile form krystalliserer fra underkjølede smelter (glas) ved temperaturer under 900°, men omvandles ved høiere temperaturer raskt til α -formen. Den kan ikke dannes ved omvandling av α -formen og er altsaa monotrop i forhold til denne.

Av systemets 7 kvintupelpunkter er 3 ternære eutektika og 4 reaktionspunkter, hvorav 1 med nedadvendt og 3 med opadvendt gaffelgrening.

De faseomsætninger, hvori den ternære forbindelse (kordierit) deltar, vil arte sig noget forskjellig fra de som hittil er beskrevet paa grund av denne forbindelses evne til at danne faste opløsninger med andre forbindelser. En nærmere redegjørelse for disse forhold kan dog ikke medtages her¹.

Forøvrig byr ikke systemets faserelationer paa noget som ikke fremgaar med tilstrækkelig tydelighet av diagrammet og tabellerne.

Det sees at blandinger inden triangelet MgO, $2 \text{ MgO} \cdot \text{SiO}_2$, MgO · Al₂O₃, altsaa magnesia »forurenset« med kiselsyre og lerjord (eller f. eks. med en ren, jern-, kalk- og alkalifri lersubstans), ikke begynder at smelte førend ved ca. 1700° . Man kan

¹ Se de originalavhandlinger hvortil henvisning er git i slutten av artikelen.

altsaa gaa ut fra at magnesia som kun indeholder litt tilblanding av denne art vil være tilstrækkelig ildfast for de fleste øiemed, da en «smeltning« av produktet i praktisk forstand først vil finde sted ved en betydelig høiere temperatur end 1 700°. Naar disse blandinger er brændt paa en saadan maate at likevegt er opnaadd, bestaar de av forsterit, spinel og periklas. Da ingen av disse bestanddele har nogen ufordelagtige egenskaper, skulde altsaa «magnesit« kunne være betydelig forurenset med kiselsyre og lerjord uten at den blir ubrukelig som ildfast materiale.

Systemet CaO-MgO-SiO₂.

 \cdot I blandinger av CaO, MgO og SiO₂, kan der dannes 4 ternære forbindelser, nemlig CaO · MgO · 2 SiO₂ (diopsid), 2 CaO · MgO · 2 SiO₂ (åkermanit), CaO · MgO · SiO₂ (monticellit) og 5 CaO · 2 MgO · 6 SiO₂. De to førstnævnte har kongruente og de to sidstnævnte inkongruente smeltepunkter.

Systemet har 14 kvintupelpunkter av hvilke 6 er ternære eutektika, 7 reaktionspunkter og et omvandlingspunkt.

Karakteristisk for dette system er den store utstrækning, hvori de forskjellige forbindelser danner faste opløsninger.

Diopsid, MgO·CaO·2SiO₂ danner en ubrutt række av faste opløsninger med MgO·SiO₂, klinoenstatit. Denne blandingsserie forekommer som naturlige mineraler, pyroxener, som dog som oftest er jernholdige. Montecellit, CaO·MgO·SiO₂, optar endel forsterit, 2MgO·SiO₂ i fast opløsning og danner krystaller som har meget tilfælles med forsterit. Åkermanit, 2CaO·MgO·2SiO₂, og forbindelsen 5CaO·2MgO·6SiO₂ danner hver for sig forskjellige serier av faste opløsninger med de andre forbindelser. Wollastonit og pseudowollastonit danner ogsaa rækker av faste opløsninger med de øvrige forbindelser.

Blandinger inden triangelet CaO, $2 \operatorname{CaO} \cdot \operatorname{SiO}_2$, MgO vil under likevegtsbetingelser først begynde at smelte ved en temperatur som ligger over 1900°. (Det ternære eutektikum for disse forbindelser er ikke nøiagtig bestemt.) Ved temperaturer under 1900°, altsaa i en tilstand, hvor der kun findes krystalliserte faser, vil der kunne optræde $3 \operatorname{CaO} \cdot \operatorname{SiO}_2$. Denne forbindelse dannes, som tidligere nævnt, ved kombination av $2 \operatorname{CaO} \cdot \operatorname{SiO}_2$ og CaO og der kræves høie temperaturer og en intim blanding av bestanddelene for at denne kombination skal kunne foregaa i nogen større utstrækning.

Paa grundlag av disse forhold kan man gjøre interessante betragtninger over kvartsholdig dolomit og let finde forklaringen paa fiere av de eiendommeligheter som saadan dolomit viser. Det er en vel kjendt erfaring, at kiselsyreholdig dolomit efter brændingen viser det før omtalte fænomen »støvning« som skyldes volumforøkelsen av 2 CaO·SiO₂ ved overgang fra høi- til lavtemperatur form (β - til γ -form). Under brændingen dannes der

altsaa 2 CaO·SiO₂ tiltrods for at der ifølge sammensætningen, hvis bestanddelene var i likevegt, skulde dannes 3 CaO·SiO₂. Den reaktion (2 CaO·SiO₂ + CaO = 3 CaO·SiO₂) hvorved dette silikat dannes, har altsaa ikke hat tid til at fuldendes.

Flerkomponentsystemer.

Av systemer med flere end tre komponenter er firekomponentsystemet CaO-MgO-Al₂O₃-SiO₂ underkastet endel foreløbige undersøkelser, mens de øvrige systemer ligger helt ubearbeidet.

Der er bestemt tre invariante punkter i dette system, nemlig det ternære eutektikum anortit — klinoenstatit — kristobalit (CaO·Al₂O₃·2 SiO₂-MgO·SiO₂-SiO₂), det ternære reaktionspunkt anortit — klinoenstatit — forsterit (2 MgO·SiO₂) og et punkt i det binære delsystem åkermanit — gehlenit (2 CaO·MgO·2SiO₂-2 CaO·Al₂O₈·SiO₂).

I det sidstnævnte system er der en kontinuerlig række av faste opløsninger mellem de to forbindelser med et minimum ved sammensætningen 26 pct. gehlenit, 74 pct. åkermanit og temperaturen 1.388° .

De nævnte invariante punkters forhold fremgaar forøvrig av tab. III. Likevegtsdiagrammet for systemet åkermanit gehlenit er gjengit i fig. 4 efter Ferguson & Buddington (se p. 52).

Foruten hvad der er omtalt i det foregaaende, foreligger der ogsaa spredte undersøkelser over andre — mere sjeldne ildfaste oksyder, men de fleste av de utførte bestemmelser av smeltepunkter m. v. kan ikke gjøre krav paa nogen høi grad av nøiagtighet. Der kjendes ingen præcisionsundersøkelser over to- og trekomponentsystemer av disse oksyder eller deres blandinger med de almindelige oksyder. Disse undersøkelser vil derfor ikke omtales her.

Av den foregaaende fremstilling vil det tydelig sees, at der allerede er utført et ganske omfattende forskningsarbeide paa det her behandlede omraade, men det vil ogsaa være klart, at der endnu maa arbeides meget førend videnskapen kan sies at beherske alle problemer vedrørende de ildfaste oksyders fysikalske kemi.

	s	Antal systemer a iO ₂ , Al ₂ O ₃ , CaO,	w komponenter MgO, Fe ₂ O ₃ , F	ne 'eO
Antal kom- ponenter i systemet	Mulige systemer	Systemer som er nogenlunde fuldstændig be- arbeidet	Systemer som kun er delvis bearbeidet	Systemer som ikke er bearbeidet
	6	4	2	0
9	15	6	2	7
2	20	4	0	16
4	15	0	1	14
5	6	0	0	6
6	1	0	0	1
	63	14	5	44

Nedenstaaende tabel gir en oversigt over forholdet mellem de kjendte og de ukjendte omraader av dette forskningsfelt. Det sees at man har rukket at gjøre nogenlunde fuldstændige eksperimentelle undersøkelser over ialt 14 av de 63 systemer, som kan dannes av de seks oksyder, mens fem systemer kun er foreløbig undersøkt og 44 praktisk talt ukjendt.

De resultater som er naadd er frugten av et møisommelig arbeide, utført av mange forskere, som har hat de bedst mulige hjælpemidler til sin raadighet¹. Naar man vet at disse undersøkelser — som kun omfatter de enkleste systemer — har tat en lang aarrække, vil det forstaaes, at der gjenstaar forskningsarbeide kanske for flere generationer bare vedrørende de seks almindeligste ildfaste oksyders likevegtsforhold ved høie temperaturer.

Desuten maa det naturligvis erindres, at ikke ethvert problem er løst, om man kjender likevegtsbetingelserne fuldstændig for alle systemer. I de ildfaste stoffer som forekommer i præksis er der — likesom i de keramiske produkter idetheletat — som regel ikke likevegt mellem bestanddelene. Under fremstillingen av ildfaste produkter gjælder det imidlertid at stræbe efter at komme likevegtstilstanden saa nær som mulig, da produkterne ellers under indvirkning av de høie temperaturer, som de er bestemt til at brukes ved, vil undergaa skadelige omvandlinger. Et nøie kjendskap til likevegtsforholdene i samtlige systemer, maa derfor betragtes som et grundlag for en dypere forstaaelse av de ildfaste stoffers teknologi.

Der er ogsaa andre vigtige sider av denne teknologi, som det ofte kan være nødvendig at gjøre til gjenstand for systematisk forskning — f. eks. raamaterialernes behandling og produkternes formning — men de fleste av de problemer som kommer i betragtning paa disse omraader er mere av ingeniørmæssig end videnskabelig natur. De vil nærmest danne specialproblemer for hver enkelt bedrift og kan vanskelig gjøres til gjenstand for den samme generelle behandling som de her betragtede fysikalsk-kemiske problemer.

¹ Hvilken arbeidsmængde der ligger bak de forholdsvis enkle data, som danner resultaterne, vil man forstaa naar det meddeles, at f. eks. utarbeidelsen av det ene trekomponentsystem CaO-Al₂O₅-SiO₂ krævet det meste av to forskeres tid i flere aar og nødvendiggjorde tilberedelsen av ca. 1000 forskjellige blandinger, hvormed der blev utført over 7000 eksperimenter med tilhørende mikroskopiske undersøkelser. I dette arbeide er ikke medregnet undersøkelsen av komponenten SiO₂ som krævet et langvarig og indgaaende specialstudium.

	sk S _l
3.40 re	3.40 re
3.65 re	3.65 re
3.95 tri 3.30 he	3.95 tri 3.30 he
(20°) 2.65 trig (561°) 2.55 trig (585°) 2.52 hex 900°) 2.53 hex	(20 [°]) 2.65 trig (561 [°]) 2.55 trig (585 [°]) 2.52 hex
2.27 pseud (ron 2.33 pseu 2.21 pseud 2.21 reg	(ron 2.27 [pseud (ron 2.30 [hex 2.33 [pseud 2.21 [reg
5.2 trigo	- 0 and and and and and and

- 41

Tabel I. Oksyder.

Omvandlingen ved 420° til en lav temperaturform er litet kjendt.
β-formen monotrop i forhold til z-formen.
Ustabilt smeltepunkt.
Ustabilt omvandlingspunkt mellem z- og β-tridymit.

				۰.		1.00	
- H -	0	n	a		- 1		
	a		0	1	- 4		

	Sar	nmen vegts	sætn s pct.	ing	Mineralnavn	fik	
Formel	CaO	MgO	$\mathrm{Al}_{2}\mathrm{O}_{3}$	SiO3	Fysikalsk-kemisk betegnelse	Speci	
$\mathbf{Al}_2\mathbf{O}_3\cdot\mathbf{SiO}_2$			62.9	87.1	Sillimanit Glas	3.24	
$\rm MgO \cdot Al_2O_3$		28.4	71.6		Spinel	3.5	
$2 \text{ MgO} \cdot \text{SiO}_2$	1	57.2		42.8	Forsterit	3.216	
MgO · SiO ₂		40.1		59.9	$\begin{array}{c} Klinoenstatit\\ \beta-MgO\cdot SiO_2\\ Enstatit\\ \alpha'-MgO\cdot SiO_2\\ \beta'-MgO\cdot SiO_2\\ Kupferit\\ \gamma'-MgO\cdot SiO_2\\ Glas\end{array}$	3.192 3.175 2.857 2.758	
$3 \ {\rm CaO} \cdot {\rm Al}_2 {\rm O}_3$	62.2		37.8			3.038	
$5 \; \mathrm{CaO} \cdot 3 \; \mathrm{Al_2O_3}$	47.8		52.2		$\begin{array}{c} \alpha\text{-}5 \ \mathrm{CaO} \cdot 3 \ \mathrm{Al}_2\mathrm{O}_5 \\ \alpha'\text{-}5 \ \mathrm{CaO} \cdot 3 \ \mathrm{Al}_2\mathrm{O}_3 \\ \mathrm{Glas} \end{array}$	2.828	
$CaO \cdot Al_2O_3$	35.4		64.6			2.981	
$3 \ \mathrm{CaO} \cdot 5 \ \mathrm{Al}_2\mathrm{O}_3$	24.8		75.2	10	$\begin{array}{c} \alpha\text{-}8 \ \mathrm{CaO} \cdot 5 \ \mathrm{Al}_{2}\mathrm{O}_{3} \\ \alpha'\text{-}3 \ \mathrm{CaO} \cdot 5 \ \mathrm{Al}_{2}\mathrm{O}_{3} \end{array}$	3 05	
$3~{\rm CaO}\cdot{\rm SiO}_2$	73.6			26.4			
$2~{\rm CaO}\cdot{\rm SiO}_2$	65.0			35.0	$\begin{array}{l} \alpha\text{-}2 \ CaO \cdot SiO_2 \\ \beta\text{-}2 \ CaO \cdot SiO_2 \\ \gamma\text{-}2 \ CaO \cdot SiO_2 \end{array}$	3.27 3.28 2.97	
$3 \text{ CaO} \cdot 2 \text{ SiO}_2$	58.2			41.8			
CaO · SiO ₂	48.2			51.8	$\begin{array}{l} Pseudowollastonit\\ z\text{-}CaO\cdot SiO_2\\ Wollastonit\\ \beta\text{-}CaO\cdot SiO_2\\ Glas \end{array}$	2.912 2.915 2.904	
$CaO\cdot Al_2O_3\cdot 2SiO_2$	20.1		36.6	43.3	Anortit Glas	2.765 2.700	
$2 \; \mathrm{CaO} \cdot \mathrm{Al}_2\mathrm{O}_3 \cdot \mathrm{SiO}_2$	40.8		37.2	22.0	Gehlenit Glas	3.038 2.884	

1) Inkongruent smeltning.

2) Monotrop i forhold til β -MgO · SiO₂.

3) Monotrop i forhold til 2-5 CaO · 3 Al2O3.

Forbindelser.

Krystalsystem	Brytningsindices Na—lys	Stabilitets- omraade C°	Smeltepunkt C ⁵
rombisk	$\begin{array}{c} \alpha = 1.638, \ \beta = 1.624, \ \gamma = 1.653 \\ n = 1.530 \end{array}$	< 1816	1816
regulær	n = 1.723	< 2135	2135
rombisk	$\alpha = 1.635, \ \beta = 1.651, \ \gamma = 1.670$	< 1890	1890
monoklin rombisk monoklin rombisk	$\begin{split} \alpha &= 1.645, \ \beta = 1.647, \ \gamma = 1.655\\ \alpha &= 1.640, \ \beta = 1.646, \ \gamma = 1.652\\ \beta &= 1.585\\ \alpha &= 1.578, \ \beta = 1.585, \ \gamma = 1.591\\ n &= 1.580 \end{split}$	< 1557 2) 2) 2)	(1557) 1)
regulær	n = 1.710	<1585	(1585)1)
regulær rombisk?	$\begin{array}{c} \alpha = 1.687 & n = 1.608 \\ \alpha = 1.687 & \gamma = 1.692 \\ n = 1.662 \end{array}$	<1455 3)	1455
monoklin?	$\alpha = 1.643, \ \beta = 1.655, \ \gamma = 1.663$	< 1600	1600
tetragonal? rombisk?	$\begin{array}{c} \omega = 1.617, \; \epsilon = 1.652 \\ \alpha = 1.662, \; \beta = 1.671, \; \gamma = 1.674 \end{array}$	<1720 4)	1720
monoklin?	$\beta = 1.715$	5) <1900	
monoklin rombisk monoklin	$ \begin{array}{l} \alpha = 1.715, \ \beta = 1.720, \ \gamma = 1.737 \\ \alpha = 1.717 \qquad \gamma = 1.735 \\ \alpha = 1.640, \ \beta = 1.645, \ \gamma = 1.654 \end{array} $	${}^{1420-2130}_{675-1420}_{< 675}$	2130
rombisk?	$\alpha = 1.641 \qquad \qquad \gamma = 1.650$	< 1475	(1475) 1)
pseudohexagonal (monoklin?) monoklin	$ \begin{array}{l} \alpha = 1.610 \qquad \gamma = 1.654 \\ \alpha = 1.616, \ \beta = 1.629, \ \gamma = 1.631 \\ n = 1.628 \end{array} $	1200—1540 <1200	1540
triklin	$ \begin{vmatrix} \alpha = 1.576, \ \beta = 1.585, \ \gamma = 1.589 \\ n = 1.575 \end{vmatrix} $	<1550	1550
tetragonal	$\omega = 1.669, \epsilon = 1.658$ n = 1.638	<1590	1590

⁴) Monotrop i forhold til α -3 CaO \cdot 5 Al₂O₃. ⁵) Spaltes ved ophetning til 1900° uten smeltning i 2 CaO \cdot SiO₂ og CaO.

-	Sa	mmer vegt	nsætn s pct.	ing	Mineralnavn	tt K
Formel	CaO	MgO	Al2Os	SiO2	Fysikalsk-kemisk betegnelse	Speci
$3 \ CaO \cdot Al_2O_3 \cdot SiO_2$	50.9		30.9	18.2		
$2~\text{CaO}\cdot\text{MgO}\cdot2~\text{SiO}_2$	41.2	14.7		44.1	Åkermanit Glas	2.944 2.955
$CaO\cdot MgO\cdot 2~SiO_2$	25.8	18.6		53.6	Diopsid Glas	$\frac{3.275}{2.854}$
$CaO \cdot MgO \cdot SiO_2$	35.9	25.6		38.5	Monticellit ³)	3.1
$5 \; CaO \cdot 2 \; MgO \cdot 6 \; SiO_2$	38.9	11.1		50,0		
$2 \text{ MgO} \cdot 2 \text{ Al}_2 \text{O}_3 \cdot 5 \text{ SiO}_2$		13.7	34.6	51.7	$\begin{array}{c} {\rm Kordierit}{}^{3}) \\ {}^{\alpha-2}{\rm MgO} \cdot 2{\rm Al}_{2}{\rm O}_{3} \cdot 5{\rm SiO}_{9} \\ {}^{\mu-2}{\rm MgO} \cdot 2{\rm Al}_{2}{\rm O}_{3} \cdot 5{\rm SiO}_{9} \end{array}$	2.6
	CaO	FeO	$\mathrm{Fe}_{\mathrm{s}}\mathrm{O}_{\mathrm{s}}$			
${\rm FeO} \cdot {\rm Fe_2O_3}$		31.0	69.0		Magnetit	5.2
$2~{\rm CaO}\cdot{\rm Fe_2O_3}$	41.2		58.8			
$\mathrm{CaO}\cdot\mathrm{Fe}_{\mathtt{S}}\mathrm{O}_{\mathtt{S}}$	25.9		74.1			

1) Inkongruent smeltning.

2) Spaltes ved ophetning til $1335\,^\circ$ uten smeltning i 2 CaO $\cdot\,SiO_2$ og CaO $\cdot\,\Lambda l_2O_3.$

 Banner faste opløsninger med varierende sammensætninger, stabilitetsomraader og fysikalske egenskaper.

- 44 -

Tabel II

- 2	P to and	1 1
. 6	TOP	reari
- N	LOL	u a u v

Krystalsystem	Brytningsindices Na—lys	Stabilitets- omraade C°	Smeltepunkt C
rombisk?	$\alpha = 1.675 \qquad \gamma = 1.685$	²) < 1835	
tetragonal	$\omega = 1.631$ $\epsilon = 1.638$ $n = 1.641$	<1458	1458
monoklin	$ \begin{vmatrix} \alpha = 1.664, \ \beta = 1.671, \ \gamma = 1.694 \\ n = 1.607 \end{vmatrix} $	< 1391	1391
rombisk	$\alpha = 1.639, \ \beta = 1.646, \ \gamma = 1.653$		(1436-1507))
rombisk?	$\alpha = 1.621, \ \beta = 1.627, \ \gamma = 1.685$		(1365) 1)
rombisk (hexagonal) hexagonal?	$ \begin{vmatrix} \alpha = 1.519 - 1.524, \ \beta \ og \\ \gamma = 1.522 - 1.528 \\ n = 1.535 - 1.560 \end{vmatrix} $	4)	(1345-1460)1)
regulær	n = 2.42 ⁵)	6) < 1580	1580
(toaksig)	$\alpha = 2.25$	<1436	(1436)1)
(enaksig)	$\omega = 2.58, \ z = 2.43$	< 1216	(1216)1)

4) Monotrop i forhold til α -2 MgO \cdot 2 Al₂O₃ \cdot 5 SiO₂.

5) For bølgelængden λ = 700 μ $\mu.$

6) Et reversibelt, magnetisk omvandlingspunkt ved 530 $^\circ\!.$

Tabel III. Invariante punkter

(med uteladelse av de kongruent smeltende oksyders og forbindelsers smeltepunkter, som er gjengit i tab. I og II).

Likevegtens at e = eutektikum r = reaktionspu
0
Ð
9
e

- 46 -

1590	1700	2065	1475	1455	1436	1450	1345	1345	1370	1550	1680	1345	1425
-		32.5	44.5	45.5	63							61.4	66.5
66.5	76					43,3	47.7	51.8	52.4	63.2	74	18.3	23.5
						6.2	6.3	6.7	6.9	3.5	iq .	20.3	10
33.5	24	67.5	55.5	54.5	37	51.5	46	41.5	40.7	33.3	21		
e	Ð	e	r	Đ	Ð	Ŀ	Ð	٩	r	r	ł	Φ	ь
$CaO \cdot Al_2O_3 - \alpha - 3 CaO \cdot 5 Al_2O_3$	$x.3 \text{ CaO} \cdot 5 \text{ Al}_2 \text{O}_3 - x.\text{Al}_2 \text{O}_3$ korund	z-CaO — z-2 CaO - SIO ₄ kaleiumoksyd — kaleiumorthosilikat	$_{2\cdot 2}$ CaO \cdot SiO $_{3}$ — 3 CaO \cdot 2 SiO $_{3}$	3 CaO \cdot 2 SiO $_{\rm g}$ $ \pi$ -CaO \cdot SiO $_{\rm g}$ pseudowollastonit	a -CaO \cdot SiO $_{a}$ — SiO $_{a}$ pseudowollastonit — tridymit	a-CaO — MgO — 3 CaO · Al ₂ O ₃ kalciumoxyd — periklas	$\label{eq:mg0} \begin{array}{l} Mg0 = 3 \; CaO \cdot Al_2O_3 = \alpha \cdot 5 \; CaO \cdot 3 \; Al_2O_3 \\ periklas \end{array}$	$\label{eq:mg0} \begin{array}{l} Mg0 -z\text{-}5\ Ca0 \cdot 3\ Al_2O_5 - Ca0 \cdot Al_2O_5 \\ periklas \end{array}$	$\begin{array}{l} MgO-MgO\cdot Al_2O_3-CaO\cdot Al_2O_3\\ pertklas-spinel \end{array}$	$\label{eq:MgO} MgO \cdot Al_2O_3 - CaO \cdot Al_2O_3 - a \cdot 3 CaO \cdot 5 Al_2O_3 \\ spinel$	$\begin{array}{l} MgO\cdot Al_2O_8 - \alpha \cdot 3 \ CuO\cdot 5 \ Al_2O_3 - \alpha \cdot Al_2O_3 \\ spinel \end{array} \\ \begin{array}{l} korund \end{array}$	β -MgO · SlO ₂ - SlO ₂ - z -2 MgO · 2 Al ₂ O ₃ · 5 SlO ₃ klinoenstatit - tridymit cordierit (fast oplosn.)	$SiO_3 - \alpha - 2MgO - 2Al_2O_3 \cdot 5SiO_3 - Al_3O_3 - SiO_2$ ridymit — kordierit (fast opl.) — slllimanit

- 47 -

Tabel III (fortsat)

aser i likevegt med smelte	Likevegtens art e = eutektikum	Smel	tens sar vegt	nmensæ s pct.	stning	Temperatur
	r = reaktionspunkt	CaO	MgO	Al_2O_3	SiO_2	c
$_3 \cdot SiO_3 - MgO \cdot Al_2O_3$ imanit - spinel	k		16.1	34.8	49.1	1460
$5 \operatorname{SiO}_3 - 2 \operatorname{MgO} \cdot \operatorname{SiO}_3$ $\operatorname{esn.}$) - forsterit	ч		25.7	22.8	51.5	1370
2 MgO · 2 Al ₂ O ₈ · 5 SiO ₈ ordierit (fast oplosn.)	e.5		25	21	54	1360
- MgO · Al ₂ O ₃ - spinel	9		56	16	28	1700
- Al ₂ O ₃ · SiO ₂ - sillimanit	ц		15.2	42	42.8	1575
aO • 2 MgO • 6 SiO ₂ st oplesn.)	e	30.6	×		61.4	1320
5 CaO · 2 MgO · 6 SiO ₂ (fast oplosn.)	r	ca. 31	ca. 8		са. 61	1330
- 3-CaO • SiO ₉ • wollastonit (fast oplasn.)	Ŀ	31.3	7.2		61.5	1335
)aO • 2 MgO • 6 SiO ₂ pplosn.) — (fast oplosn.)	L	31.4	7.6	×.	61	1340
— 2 CaO · MgO · 2 SiO ₂ åkermanit	ц	36.7	12.3		51	1365
$0_{*} - 2 \operatorname{CaO} \cdot \operatorname{MgO} \cdot 2 \operatorname{SiO}_{*}$ - åkermanit	e	36	12.6		51.4	1350

- 48 -

1357	1877	1387	1436	1436	1498	1502	> 1900	1170	1345	1310	1505	1265	1380
50	44.5	44.3	42.7	44.4	40.3	41.5	o.	62.0	70.4	41.0	9.2	4	31.8
				20				14.8	19.8	11.8	53.3	20	39
20.2	6.3	6.2	18.3	22.3	22.3	26.4	o.						-
29.8	49.2	49.5	39	33.3	37.3	32.1	a.	23.2	9.8	47.2	37.5	38	29.2
•													
9	Ð	T	9	-	1	Ŀ	U U	e	e	0	9	e	0
$\begin{array}{l} 2 \ \mathrm{CaO} \cdot \mathrm{MgO} \cdot 2 \ \mathrm{SiO}_2 & - 2 \ \mathrm{MgO} \cdot \mathrm{SiO}_2 - \mathrm{MgO} \cdot \mathrm{CaO} \cdot 2 \ \mathrm{SiO}_2 \\ \\ \mathrm{åkermanit} & - \ \mathrm{forsterit} & - \ \mathrm{diopsid} \end{array}$	$\begin{array}{l} z\text{-CaO}\cdot\text{SiO}_2 = 3 \text{ CaO}\cdot 2 \text{ SiO}_2 = 2 \text{ CaO}\cdot\text{MgO}\cdot 2 \text{ SiO}_2\\ \text{pseudowollastonit} & \text{åkermanit} \end{array}$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} 3.2 \ {\rm CaO} \cdot {\rm SiO}_{*} - 3 \ {\rm CaO} \cdot 2 \ {\rm SiO}_{*} - 2 \ {\rm CaO} \cdot {\rm MgO} \cdot 2 {\rm SiO}_{*} \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \\ \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} $	$\begin{array}{l} 2 \ {\rm CaO} \cdot {\rm MgO} \cdot 2 \ {\rm SiO}_{\rm s} - z \cdot 2 \ {\rm CaO} \cdot {\rm SiO}_{\rm s} - {\rm CaO} \cdot {\rm MgO} \cdot {\rm SiO}_{\rm s} \\ {\rm åkermanit} - {\rm kalciumorthosilikat} - {\rm monticellit} \ ({\rm fast oplosen.}) \end{array}$	$\label{eq:calibration} \begin{array}{c} 2 \ \mathrm{CaO} \cdot \mathrm{MgO} \cdot 2 \ \mathrm{SiO}_{\mathrm{s}} - 2 \ \mathrm{MgO} \cdot \mathrm{SiO}_{\mathrm{s}} - \mathrm{CaO} \cdot \mathrm{MgO} \cdot \mathrm{SiO}_{\mathrm{s}} \\ \\ \mathrm{akermanit} - \mathrm{forsterit} - \mathrm{monticellit} \ (\mathrm{fast oplosn.}) \end{array}$	$MgO - CaO \cdot MgO \cdot SiO_3 - 2.2 CaO \cdot SiO_3$ periklas - monticellit (fast oplosn.) - kalciumorthosilikat	$MgO = 2 MgO \cdot SiO_2 - CaO \cdot MgO \cdot SiO_3$ periklas – forsterit – monticellit (fast oplosn.)	$MgO - x \cdot CaO - x \cdot CaO$ periklas - kalciumoksyd - kalciumorthosilikat	$CaO \cdot Al_2O_3 \cdot 2 \operatorname{SiO}_4 - \operatorname{SiO}_2 - a \cdot CaO \cdot \operatorname{SiO}_4$ anortit tridymit pseudowollastonit	CaO · Al ₃ O ₃ · 2 SiO ₃ - Al ₃ O ₃ · SiO ₄ - SiO ₅ anortit - sillimanit - tridymit	$\begin{array}{l} 2 \ \mathrm{CaO} \cdot \mathrm{Al_2O_3} \cdot \mathrm{SiO_3} & - \ \mathrm{3} \ \mathrm{CaO} \cdot \mathrm{2} \ \mathrm{SiO_3} & - \ \mathrm{z} \cdot \mathrm{CaO} \cdot \mathrm{SiO_3} \\ \mathrm{gehlenit} & \mathrm{pseudowollastonit} \end{array}$	2 CaO \cdot Al ₉ O ₃ \cdot SiO ₃ $-$ CaO \cdot Al ₂ O ₃ $ \alpha$ -3 CaO \cdot 5 Al ₂ O ₃ gehlenit	$\begin{array}{l} 2 \ CaO \cdot Al_2O_3 \cdot SiO_3 - CaO \cdot Al_2O_5 \cdot 2 \ SiO_2 - z \cdot CaO \cdot SiO_3 \\ generation \\ generation \\ \end{array} \\ \begin{array}{l} - \ Dseudowold action \\ \end{array} \end{array}$	$\begin{array}{l} 2 \ \mathrm{CaO} \cdot \mathrm{Al}_{3}\mathrm{O}_{3} \cdot \mathrm{SiO}_{2} - \mathrm{CaO} \cdot \mathrm{Al}_{2}\mathrm{O}_{3} \cdot 2 \ \mathrm{SiO}_{3} - \alpha \cdot \mathrm{Al}_{3}\mathrm{O}_{3} \\ \mathrm{gehlenit} - \alpha \cdot \mathrm{anortit} + \alpha \cdot \mathrm{anortit} \end{array}$

Norges Geol. Unders. Nr. 101.

- 49 - ·

Tabel III (fortsat)

Temperatur	~	1335	1335	1512	1380	1335	1475	1455	1470	1900	1299	1359
tning	SIO4	6.8	6.8	47.9	9.7	39.9	24.3	8.7	7.5	22.4	47.3	0.07
i pet.	Al ₂ O ₃	43.7	41.2	36.5	42.0	11.9	44.5	33.0	32.8	9.2	18.6	19.5
ens san vegts	OgM											
Smelt	CaO	49.5	52	15.6	48.3	48.2	31.2	58.3	5.9.7	68.4	34.1	10.5
Likevegtens art e = eutektikum	r = reaktionspunkt	ð	c	L,	н	Ŀ	н	r	E.	Ŀ	o	e
Krystalliserte faser i likevegt med smelte		$\beta \cdot 2~{\rm CaO} \cdot {\rm SiO}_8 - {\rm CaO} \cdot {\rm Al}_2 {\rm O}_3 - \alpha \cdot 5~{\rm CaO} \cdot 3~{\rm Al}_2 {\rm O}_3$ kaleiumorthosilikat	$\beta\text{-}2$ CaO \cdot SiO_2 $-$ 3 CaO \cdot Al_2O_3 $-$ z-5 CaO \cdot 3 Al_2O_3 kalciumorthosilikat	$CaO \cdot Al_2O_3 \cdot 2 \operatorname{SiO}_2 - z \cdot Al_2O_3 - Al_2O_3 \cdot \operatorname{SiO}_2$ anortit korund sillimanit	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{l} 2 \ {\rm CaO} \cdot {\rm Al}_2 {\rm O}_3 \cdot {\rm SiO}_2 \ - \ 3 \ {\rm CaO} \cdot 2 \ {\rm SiO}_2 \ - \ \beta {\rm -2 \ CaO} \cdot {\rm SiO}_3 \\ {\rm gehlenit} \\ \end{array} \\ \begin{array}{l} {\rm kabelikat} \end{array}$	$z-3 \operatorname{CaO} \cdot 5 \operatorname{Al}_2 \operatorname{O}_3 = 2 \operatorname{CaO} \cdot \operatorname{Al}_2 \operatorname{O}_3 \cdot \operatorname{SiO}_2 = z-\operatorname{Al}_2 \operatorname{O}_3$ gehlentt – korund	$3\ \mathrm{CaO}\cdot\mathrm{SiO}_2 - 3\ \mathrm{CaO}\cdot\mathrm{Al}_2\mathrm{O}_3 - 2\cdot\mathrm{CaO}\cdot\mathrm{SiO}_2 \\ \mathrm{kalciumorthosilikat}$	2-CaO - 3 CaO · SIO ₂ - 3 CaO · Al ₂ O ₂ kalciumoksyd - trikalciumsilikat	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$CaO \cdot Al_2O_3 \cdot 2 SiO_2 - z \cdot CaO \cdot SiO_2$ anortit - pseudowollastonit	$CaO \cdot Al_2O_3 \cdot 2 \operatorname{SiO}_3 - \operatorname{SiO}_3$ anorth - tridymit

- 50 -

1545	1547	1512	1552	1385	1316	1350	1222	1260	1388
26.7	41.4	9.3	14.2	33.0	41.1	6.9	61.9	54.2	38.3
23.7	39.3	52.9	50.8	36.8	13.2	41.8	18.5	20.2	9.7
							5.4	14.6	10.9
49.6	19.3	37.8	35	30.2	45.7	51.3	10.2	11.0	41.1
e	e	e	Ð	e	a	9	ۍ	Ŀ	(1
$2 \operatorname{CaO} \cdot \operatorname{Al}_2 \operatorname{O}_5 \cdot \operatorname{SiO}_2 - \infty \cdot 2 \operatorname{CaO} \cdot \operatorname{SiO}_2$ gehlenft — kalciumorthosilikat	$CaO \cdot Al_{g}O_{3} \cdot 2 SIO_{g} - 2 \cdot Al_{g}O_{3}$ anorth - korund	$2 \text{ CaO} \cdot \text{Al}_{s} \text{O}_{a} \cdot \text{SiO}_{y} - \text{CaO} \cdot \text{Al}_{s} \text{O}_{a}$ gehlenit	2 CaO \cdot Al ₂ O ₃ \cdot SiO ₃ $ z$ -3 CaO \cdot 5 Al ₂ O ₃ gehlenit	$\label{eq:CaO} CaO \cdot Al_{a}O_{a} \cdot 2 SiO_{a} - 2 CaO \cdot Al_{a}O_{a} \cdot SiO_{a}$ anortit — gehlenit	2 CaO \cdot A1 ₂ O ₃ \cdot SiO ₂ $- z \cdot$ CaO \cdot SiO ₂ gehlenit $-$ pseudowollastonit	β -2 CaO · SiO $_2$ — 2-5 CaO · 3 Al $_2$ O $_3$ kaleiumorthosilikat	$CaO \cdot Al_2O_3 \cdot 2 SIO_2 = [5 MgO \cdot SIO_3 - SiO_3 - SiO_3 another another klinoenstatte - tridymit$	$CaO \cdot Al_{3}O_{3} \cdot 2 SiO_{2} = 5 \cdot MgO \cdot SiO_{2} = 2 MgO \cdot SiO_{3}$ anortit — klinoenstatit — forsterit	$\label{eq:cargo} \begin{array}{l} 2 \; \mathrm{CaO} \cdot \mathrm{Al_3O_3} \cdot \mathrm{SiO_2} \left(26 \; \mathrm{pct.} \right) \; + \; 2 \; \mathrm{CaO} \cdot \mathrm{MgO} \cdot 2 \; \mathrm{SiO_3} \left(74 \; \mathrm{pct.} \right) \\ \mathrm{fast oplosning gehlenit} \; - \; \mathrm{akermanit} \end{array}$

¹) Likevegten bestaar mellem en fast opløsning av den givne sammensætning og en smelte av samme sammensætning ved en minimumstemperatur (1388[°]), hvor likevegtsdiagrammets solidus- og liquiduskurver berører hinanden (se fig. 4).

- 51 --

Litteraturfortegnelse.

Nedenfor henvises til de vigtigste av de publikationer fra Det geofysiske laboratorium, som omhandler ildfaste oksyder.

C. N. Fenner, Die Stabilitätsbeziehungen der Kieselsäuremineralien. Zeitschr. anorg. Chem. 85, 133 (1914).

Samme avhandling ogsaa trykt i Amer. Journ. Science (4), 36, 338 (1913).

- R. B. Sosman, The Physical Chemistry of Seger Cones. Transactions Amer. Ceramic Soc. 15, 482 (1913).
- Olaf Andersen & N. L. Bowen, Das binäre System Magnesiumoxyd-Silicium-2-oxyd. Zeitschr. anorg. Chem. 87, 283 (1914).

Samme avhandling ogsaa trykt i Amer. Journ. Science (4) 37, 487 (1914).

- N. L. Bowen, The Ternary System: Diopside-Forsterite-Silicia. Amer. Journ. Science, (4), 38, 207 (1914).
- G. A. Rankin & F. E. Wright, Das ternäre System: Calciumoxyd-Aluminiumoksyd-Silicium-2-oxyd. Zeitschr. anorg. Chem. 92, 213, (1915). Samme avhandling ogsaa trykt i Amer. Journ. Science (4), 39, 1, (1915).
- Olaf Andersen, Das System: Anortit-Forsterit-Kieselsäure. Neues Jahrbuch Min. Geol. Beil. B. XL, 701 (1916).

Samme avhandling ogsaa trykt i Amer. Journ. Science (4), 39, 407 (1915).

- G. A. Rankin & H. E. Merwin, The Ternary System: CaO-Al₂O₅-MgO, Journ. Amer. Chem. Soc. 38, 568 (1916).
- R. B. Sosman & J. C. Hostétter, The oxides of iron, I. Solid solution in the system Fe₂O₃—Fe₃O₄. Journ. Amer. Chem. Soc. 38, 807 (1916).
- J. C. Hostetter & R. B. Sosman, The dissociation of ferric oxide in air. Journ. Amer. Chem. Soc. 38, 1188 (1916).
- J. B. Ferguson & H. E. Merwin, The ternary System: CaO-MgO-SiO₂. Amer. Journ. Science, (4), 48, 81 (1919).
- R. B. Sosman, The common refractory oxides. Journ. Ind. Engin. Chem. 8, 985 (1916).

Samme avhandling ogsaa trykt i Trans. Faraday Soc. Vol XII (1917).

- R. B. Sosman & H. E. Merwin, Preliminary report on the system Lime-Ferric Oxide. Journ. Washington Acad. Science, 6, 532 (1916).
- R. B. Sosman, Some problems of the oxides of iron. Journ. Washington Acad. Science, 7, 55 (1917).
- G. A. Rankin & H. E. Merwin, The ternary system MgO-Al₂O₃-SiO₂. Amer. Journ. Science, (4), 45, 301 (1918),
- J. B. Ferguson & H. E. Merwin, The melting points of Cristobalite and tridymite. Amer. Journ. Science, (4), 46, 417, (1918).
- J. B. Ferguson & A. F. Buddington, The binary system Åkermanite-Gehlenite. Amer. Journ. Science, (4), 50, 181 (1920).

Summary.

In the present paper an attempt is made to summarize briefly the most reliable results of recent high temperature investigations of refractory oxides. As practically all the exact work in this field is done at the Geophysical Laboratory of the Carnegie Institution the paper is in substance a brief review of those of the publications from the Geophysical Laboratory that deal particularly with refractory oxides and with systems having two, three, and partly four of these oxides as components.

Tables I (p. 41) and II (pp. 42–45) contain the properties of the pure oxides (I) and their compounds (II). The main columns of these tables are headed: Formula; Composition, weight percent (in table II only); Mineral name, physico-chemical denotation; Specific gravity; Crystal system; Refractive indices; Region of stability, C° ; Melting point, C° .

Table III (pp. 46—51) contains the data fixing the invariant points of those of the composite systems which have been worked out in detail (excluding the melting points of the pure oxides and their stable compounds which are given in tables I and II). The four main columns of the table are headed: Crystallized phases in equilibrium with melt; Type of equilibrium, e = eutectic point, r = reaction point; The composition of the melt, weight per cent; Temperature, C^a.

The plates I and II are reproduced after R. B. Sosman's paper on the common refractory oxides (see references p. 52) with some minor changes and additions made necessary by data published after the appearance of Sosman's paper.

The text of the paper explains the numerical data of the tables and the diagrams of the plates. In the introduction ("Indledning" pp. 5-7) it is pointed out how the technology of ceramics and especially refractories may benefit from the exact experimental work on the problems of physico-chemical petrology.

The section headed *Metoder (pp. 7—11) gives a very brief outline of the methods employed in the study of high temperature equilibria. Under the main heading *Resultater (pp. 11—39) all the examined systems of the 6 oxides SiO₂, Al₂ O₈, CaO, MgO, Fe₂O₈ and FeO are described, brief remarks on the application of the scientific data to practical problems being included. The systems are described in the order of increasing complexity, and a few notes explaining the general phase rule principles of the diagrams are inserted. In the concluding paragraphs (pp. 39-40) the limitations of our present knowledge of high temperature equilibria is emphasized. It appears from the table p. 39 that of the 63 possible systems containing one or more of the 6 components listed, only 14 are fairly completely worked out, while 5 are partly studied and 44 practically unknown.

The list of references p. 52 contains a selection of the papers from the Geophysical Laboratory that may be consulted by those who want more detailed information than the present synopsis can give.

Trykt 5. april 4922.

A. W.

Utgit for Statens Raastofkomité av Norges geologiske Undersøk

8) Ma 9) Fe 10) Et ndlingspunkt ved 530

190 2 MgO · 2 Al₂O₃ · 5 SiO₂.

 $\frac{1}{\lambda} = 700$

til 190

5) Spaltes ved opho

-966966

punkt mellem \approx og β -tridymit, punkt mellem \approx og β -kristobalit, nger ved + 40° og 678°. ere temperaturer avgir hematit sur

Tabel II. Forbindelser.

(1216) 1)	<1216	m = 2.58, z = 2.48	(enaksig)			_	74.1		25.9	CaO · Fe ₃ O ₃
(1436)1)	< 1436	a = 2.25	(toaksig)				58.8		41.2	$2 \text{ CaO} \cdot \text{Fe}_2 \text{O}_3$
1580	10) < 1580	$n = 2.42^{-9}$	regulær	5.2	Magnetit	1	69.0	31.0		$FeO \cdot Fe_3O_8$
							Fe ₂ O ₃	FeO	CaO	
(1345-1460)1	8)	$\begin{array}{c} z = 1.519 {}1.524, \ \beta \ og \\ \gamma = 1.522 {}1.528 \\ n = 1.535 {}1.560 \end{array}, \label{eq:rescaled_rescaled_rescaled}$	rombisk (hexagonal) hexagonal?	2.6	$\begin{array}{c} \text{Kordierit 7} \\ \text{k-2} \ \text{MgO} \cdot 2 \ \text{Al}_{9}\text{O}_{3} \cdot 5 \ \text{SiO}_{9} \\ \text{k-2} \ \text{MgO} \cdot 2 \ \text{Al}_{9}\text{O}_{3} \cdot 5 \ \text{SiO}_{9} \end{array}$	51.7	34.6	13.7		2 MgO · 2 Al ₂ O ₃ · 5 SiO ₂
(1365) 1)		$\alpha=1.621,\ \beta=1.627,\ \gamma=1.635$	rombisk?			50.0		11.1	38.9	5 CaO · 2 MgO · 6 SiO ₂
(1436-1507)1		$\alpha = 1.639, \ \beta = 1.646, \ \gamma = 1.658$	rombisk	8.1	Monticellit ⁷)	38.5		25.6	35.9	$CaO\cdot MgO\cdot SIO_2$
1391	<1391		monoklin	3.275 2.854	Diopsid Glas	53.6		18.6	25.8	$C_{a}O \cdot M_{g}O \cdot 2 \operatorname{SiO}_{2}$
1458	< 1458	$\omega = 1.631 \qquad \epsilon = 1.638 \\ n = 1.641$	tetragonal	$2.944 \\ 2.955$	Åkermanit Glas	44.1		14.7	41.2	$2~CaO \cdot MgO \cdot 2~SiO_2$
	6) < 1335	$\alpha = 1.675$ $\gamma = 1.685$	rombisk?			18.2	30.9		50.9	$3\ CaO\cdot Al_{9}O_{8}\cdot SiO_{9}$
1590	< 1590	$\omega = 1.669, \epsilon = 1.658$ n = 1.638	tetragonal	3.038 2.884	Gehlenit Glas	22.0	37.2		40.8	$2 \ CaO \cdot Al_2O_3 \cdot SiO_2$
1550	< 1550		triklin	$2.765 \\ 2.700$	Anortit Glas	43.3	36.6		20,1	$CaO\cdot Al_{9}O_{3}\cdot 2SlO_{9}$
1540	1200-1540 <1200	$\begin{split} \alpha &= 1.610 & \gamma = 1.654 \\ \alpha &= 1.616, \ \beta = 1.629, \ \gamma = 1.681 \\ n &= 1.628 \end{split}$	pseudohexagonal (monoklin?) monoklin	2.912 2.915 2.904	$\begin{array}{l} Pseudowollastonit\\ z_{z}-CaO\cdot SiO_{y}\\ Wollastonit\\ \beta-CaO\cdot SiO_{y}\\ Glas\end{array}$	51.8			48.2	$CaO \cdot SiO_{2}$
(1475)1)	< 1475	$\alpha = 1.641$ $\gamma = 1.650$	rombisk?			41.8			58.2	3 CaO · 2 SIO ₂
2130	$\overset{1420-2130}{675-1420} \\ \stackrel{\scriptstyle <}{\scriptstyle <} 675$	$\begin{array}{l} \alpha = 1.715, \ \beta = 1.720, \ \gamma = 1.737 \\ \alpha = 1.717, \ \gamma = 1.640, \ \beta = 1.645, \ \gamma = 1.654 \end{array}$	monoklin rombisk monoklin	3.27 3.28 2.97	$\begin{array}{c} x \cdot 2 \ CaO \cdot SiO_{9} \\ \beta \cdot 2 \ CaO \cdot SiO_{9} \\ \gamma \cdot 2 \ CaO \cdot SiO_{9} \end{array},$	35.0			65.0	2 CaO · SiO ₂
	5) < 1900	$\beta = 1.715$	monoklin?			26.4			73.6	3 CaO · SiO ₂
1720	4) < 1720	$\substack{\omega = -1.617, \ z = -1.652 \\ z = 1.662, \ \beta = 1.671, \ \gamma = 1.674 \ }$	tetragonal? rombisk?	3.05	$\begin{array}{c} \alpha \cdot 3 \ \mathrm{CaO} + 5 \ \mathrm{Al_2O_3} \\ \alpha' \cdot 3 \ \mathrm{CaO} + 5 \ \mathrm{Al_2O_3} \end{array}$		75.2		24.8	3 CaO • 5 Al ₂ O ₃
1600	< 1600	$\alpha=1.643,\ \beta=1.655,\ \gamma=1.663$	monoklin?	2.981			64.6		35.4	CaO · AlgOs
1455	3) < 1455	$\label{eq:constraint} \begin{split} \alpha = 1.687 & n = 1.608 \\ \eta = 1.682 & \gamma = 1.692 \end{split}$	regulær rombisk ?	2.828	2-5 CaO · 3 Al ₂ O ₃ 2'-5 CaO · 3 Al ₂ O ₃ Glas		52.2		47.8	5 CaO · 3 Al ₂ O ₈
(1535)1)	< 1535	n = 1.710	regulær	3.038			87.S		62.2	3 CaO · AlgO3
(1557) ¹)	2) 2) 2) 2)	$\begin{split} \alpha &= 1.645, \ \beta = 1.647, \ \gamma = 1.655 \\ \alpha &= 1.640, \ \beta = 1.646, \ \gamma = 1.652 \\ \alpha &= 1.578, \ \beta = 1.585 \\ \alpha &= 1.578, \ \beta = 1.585, \ \gamma = 1.591 \\ n &= 1.580 \end{split}$	monoklin rombisk monoklin rombisk	3.192 3.175 2.857 2.758	Klinoenstatit β -MgO \cdot SiO ₂ Enstatt α' -MgO \cdot SiO ₃ β' -MgO \cdot SiO ₃ β' -MgO \cdot SiO ₂ Kupterit γ' -MgO \cdot SiO ₂ Glas	59.9		40.1		MgO · SIO ₂
1890	<1890	$\alpha = 1.635, \ \beta = 1.651, \ \gamma = 1.670$	rombisk	3.216	Forsterit	42.8		57.2		2 MgO · SiO ₂
2135	< 2135	n = 1.723	regulær	3.5	Spinel		71.6	28.4		$MgO \cdot Al_2O_3$
1816	< 1816	$\alpha = 1.638, \; \beta = 1.624, \; \gamma = 1.653 \\ n = 1.530$	rombisk	3.24	Sillimanit Glas	37.1	62.9			$\mathrm{Al}_{\$}\mathrm{O}_{\$}\cdot\mathrm{SiO}_{\$}$
CBunt	omraade C°	Na-lys	Krystalsystem	Speci veg	Fysikalsk-kemisk betegnelse	SiO ₂	Al ₂ O _a	MgO	CaO	Formel
C	Stabilitets-	Destate	100 No.	fik t	Mineralnavn	ng	sætni i pet.	vegts	Sa	

AKGGGPO

go 09

5

E m

Ş	~
ers	1
iat	2
0	2
Pr	5
de	<
3	0
est	
T	14
ra	
KTP.	>
risi	G
fish	
P	<u>, 1</u>
6	1
sta	7
inte	
Pr	$\mathbf{\nabla}$
S.	\mathbf{T}
ok	А
SV0	S
Pr	21
P	7
na	ΓI
de	\sim
PS	C
Kp	X
ž	2
ske	S
5 fr	1
rh	N
'nd	5
D/S	M
P	

(Efte ders fysikalske N. G. U. Nr. 101).

ALCONDING TO A CONTRACTOR	Sio.	Al ₂ O ₃	MgO 1	CaO o	Formel	
Termstit	Kvarts 3-Kvarts -Tridymit 3-Tridymit Kristobalit 3-Kristobalit 3-Kristobalit	Korund AlyO ₃ 3-AlyO ₃	Periklas	z-CaO	Mineralnavn Fysikalsk-kemisk betegnelse	
5.2	(20 °) 2.65 (561 °) 2.55 (585 °) 2.52 (900 °) 2.53 2.27 ca. 2.80 2.21 2.21 2.21	3.95	3.65	3.40	Specifik vegt	
trigonal	trigonal hexagonal pseudohexagonal (rombisk?) hexagonal pseudoregulær regulær	trigonal hexagonal?	regulær	regulær	Krystalsystem	
$\omega = 3.22; z = 2.94$	$ \omega \left\{ \begin{array}{l} (20^\circ) = 1.544 \\ (570^\circ) = 1.555 \\ \vdots \\ [570^\circ] = 1.535 \\ \vdots \\ (570^\circ) = 1.533 \\ \vdots \\ (580^\circ) = 1.533 \\ \vdots \\ (580^\circ) = 1.540 \\ n = 1.475 \\ n = 1.485 \\ n = 1.459 \end{array} \right. $	$\omega = 1.768$; $\varepsilon = 1.760$ $\omega = 1.677$; $\varepsilon = 1.635-1.650$	n = 1.784	n = 1.882	Brytningsindices Na—lys	
6)	< 575 575-870 $(< 200-275)^4$) 870-1470 $(< 117)^5$ 1470-1710	2)	< 2800	ca. 420 ¹) 2570	Stabilitets- omraade C°	
7)	(< 1470)3) (1670)3) 1710	2050	2800	2570	Smelte- punkt C ^o	

120° til en lav ten forhold til z-fori

Norges Geol. Unders. Nr. 101.

Pl. I.

Norges Geol. Unders. Nr. 101.

ALMINDELIGE ILDFASTE OKSYDER.

Oversigt over blandingssystemernes kjendte, invariante punkter (ɔ: temperaturer og sammensætninger som karakteriserer smeltninger og omvandlinger i blandingerne).

(Efter Olaf Andersen, Ildfaste oksyders fysikalske kemi, N. G. U. Nr. 101).

Tabel III. Invariante punkter

(med uteladelse av de kongruent smeltende oksyders og forbindelser smeltepunkter, som er gjengit i tab. I og II).

	Krystalliserte faser i likevegt med smelte	Likevegtens art e – eutektikum	Smel	tens sa vegt	mmensa ts pct.	etning	Temperatur	Krystalliserte faser i likevegt med smelte	Likevegtens art e = eutektikum	Smel	tens sar vegt:	nmensa s pct.	tning	Temperatur
		r = reaktionspunkt	CaO	MgO	Al ₂ O ₈	SiO ₂			r = reaktionspunkt	CaO	MgO	Al_2O_3	SiO ₂	C~
	∝-CaO — MgO kalciumoksyd — periklas	е	67	33			2300	$\begin{array}{c} \alpha \text{-CaO} \cdot \text{SiO}_2 = 3 \ \text{CaO} \cdot 2 \ \text{SiO}_2 = 2 \ \text{CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ \text{pseudowollastonit} & \\ & \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{SiO}_2 = 2 \ \text{CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ & \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{SiO}_2 = 2 \ \text{CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ & \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{SiO}_2 = 2 \ \text{CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{SiO}_2 = 2 \ \text{CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{SiO}_2 = 2 \ \text{CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{SiO}_2 = 2 \ \text{CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{SiO}_2 = 2 \ \text{CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{SiO}_2 = 2 \ \text{CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{SiO}_2 = 2 \ \text{CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{SiO}_2 \\ & \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{SiO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{MgO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot \text{SiO} \cdot 2 \ \text{SiO}_2 \\ & \\ \end{array} \end{array} \\ \begin{array}{c} \alpha \text{-CaO} \cdot 2 \ \text{SiO}_2	e	49.2	6.3		44.5	1377
	$\alpha \cdot Al_2O_3 - Al_2O_3 \cdot SiO_2$ korund - sillimanit	e			64	36	1810	$ \begin{array}{c} \beta \cdot 2 \ \text{CaO} \cdot \text{SiO}_2 - 3 \ \text{CaO} \cdot 2 \ \text{SiO}_2 - 2 \ \text{CaO} \cdot \text{MgO} \cdot 2 \text{SiO}_2 \\ \text{kalciumorthosilikat} & \text{åkermanit} \end{array} $	r	49.5	6.2		44.3	1387
	$Al_2O_3 \cdot SiO_2 - SiO_2$ sillimanit - kristobalit	е			13	87	1610	2 CaO · MgO · 2 SiO ₂ — z·2 CaO · SiO ₂ — CaO · MgO · SiO ₂ åkermanit — kalciumorthosilikat — monticellit (fast opløsn.)	e	39	18.3		42.7	1436
	$\mathrm{MgO}-\mathrm{MgO}\cdot\mathrm{Al_2O_3}$ periklas — spinel	e		45	55		2030	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	r	33.3	22.3		44.4	1436
	$\mathrm{MgO} \cdot \mathrm{Al_2O_3} - \mathrm{a} \cdot \mathrm{Al_2O_3}$ spinel - korund	е		2	98		1925	$MgO - CaO \cdot MgO \cdot SiO_2 - \alpha - 2 CaO \cdot SiO_2$ petiklas - monticellit (fast opløsn.) - kalciumorthosilikat	r	37.8	22.3		40.3	1498
	$\mathrm{MgO}-2\ \mathrm{MgO}\cdot\mathrm{SiO}_{2}$ periklas — forsterit	e		65		35	1850	$MgO = 2 MgO \cdot SiO_2 = CaO \cdot MgO \cdot SiO_2$ periklas = forsterit = monticellit (fast opløsn.)	r	32.1	26.4		41.5	1502
	$\begin{array}{c} 2 \ \text{MgO} \cdot \text{SiO}_2 & -\beta \text{-MgO} \cdot \text{SiO}_2 \\ \text{forsterit} & - \text{klinoenstatit} \end{array}$	· r -		39		61	1557	$MgO - \alpha$ -CaO - α -2 CaO · SiO ₂ periklas - kalciumoksyd - kalciumorthosilikat	e e	9	?		?	> 1900
	β-MgO · SiO ₂ — SiO ₂ klinoenstatit — kristobalit	е		35		65	1548	$CaO \cdot Al_2O_3 \cdot 2 SiO_2 - SiO_2 - z \cdot CaO \cdot SiO_2$ anortit - tridymit - pseudowollastonit	е	23.2		14.8	62.0	1170
	α-CaO — 3 CaO · Al₂O₃ kalciumoksyd	r	62.2		37.8		1535	$CaO \cdot Al_2O_5 \cdot 2 SiO_2 - Al_2O_3 \cdot SiO_2 - SiO_2$ anortit - sillimanit - tridymit	е	9.8		19.8	70.4	1845
	$3~{\rm CaO}\cdot{\rm Al_2O_8}-\alpha\text{-}5~{\rm CaO}\cdot3~{\rm Al_2O_8}$	е	50		50		1395	$2 \operatorname{CaO} \cdot \operatorname{Al}_2\operatorname{O}_3 \cdot \operatorname{SiO}_2 - 3 \operatorname{CaO} \cdot 2 \operatorname{SiO}_2 - \alpha \cdot \operatorname{CaO} \cdot \operatorname{SiO}_3$		17.0				
	$\rm \alpha\text{-}5~CaO\cdot3~Al_2O_3-CaO\cdotAl_2O_3$	e	47		58		1400	gehlenit pseudowollastonit	c	47.2		11.8	41.0	1310
	$CaO\cdot Al_2O_3 - \alpha \cdot 3 \ CaO\cdot 5 \ Al_2O_3$	е	33.5		66.5		1590	$\begin{array}{c} 2 \operatorname{CaO} \cdot \operatorname{Al}_2 \operatorname{O}_3 \cdot \operatorname{SiO}_3 - \operatorname{CaO} \cdot \operatorname{Al}_2 \operatorname{O}_3 - \alpha \cdot 3 \operatorname{CaO} \cdot 5 \operatorname{Al}_2 \operatorname{O}_3 \\ \text{gehlenit} \end{array}$	е	37.5		58.8	9.2	1505
	α -3 CaO · 5 Al ₂ O ₃ — α -Al ₂ O ₃ korund	e	24		76		1700	$\begin{array}{ c c c c c c c c } 2 & CaO \cdot Al_2O_3 \cdot SiO_2 - CaO \cdot Al_2O_3 \cdot 2 & SiO_2 - \alpha \cdot CaO \cdot SiO_2 \\ \hline generation generation & - pseudowollastonit \\ \hline generation & - pseudowollastoni \\ \hline generation & $	е	38		20	42	1265
	α-CaO — α-2 CaO · SiO₂ kalciumoksyd — kalciumorthosilikat	e	67.5			82.5	2065	$\begin{array}{c} 2 \operatorname{CaO} \cdot \operatorname{Al}_2 \operatorname{O}_3 \cdot \operatorname{SiO}_2 - \operatorname{CaO} \cdot \operatorname{Al}_2 \operatorname{O}_3 \cdot 2 \operatorname{SiO}_2 - \alpha \cdot \operatorname{Al}_2 \operatorname{O}_3 \\ \text{gehlenit} - \text{anortit} - \text{korund} \end{array}$	е	29.2		39	31.8	1380
	α -2 CaO · SiO ₂ — 3 CaO · 2 SiO ₂	r	55.5			44.5	1475	β -2 CaO · SiO ₂ — CaO · Al ₂ O ₅ — α -5 CaO · 3 Al ₂ O ₃		10.5		10.7	0.0	1005
	$3 \text{ CaO} \cdot 2 \text{ SiO}_2 - \alpha \text{-CaO} \cdot \text{SiO}_3$	е	54.5			45.5	1455	kalciumorthosilikat		49.0		20.4	0.8	1339
81 T	pseudowollastonit	5×						β -2 CaO · SiO ₂ - 3 CaO · Al ₂ O ₃ - α -5 CaO · 3 Al ₂ O ₃ kalciumorthosilikat	е	52		41.2	6.8	1335
	$a - ba0^{-} - 5iO_2 - 5iO_2$ pseudowollastonit - tridymit $a - C_2O_2 - MaO_2 - 2C_2O_2 - MaO_2$	e	37			63	1436	$\frac{\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 2 \operatorname{SiO}_2 - \alpha \cdot \text{Al}_2\text{O}_3 - \text{Al}_2\text{O}_3 \cdot \text{SiO}_2}{\text{anortit} - \text{korund} - \text{sillimanit}}$	r	15.6		36.5	47.9	1512

gehlenit — kalciumorthosilikat	r	48.3		42.0	9.7	1380	
$\begin{array}{c} 2 \operatorname{CaO} \cdot \operatorname{Al}_2 \operatorname{O}_3 \cdot \operatorname{SiO}_2 & = 3 \operatorname{CaO} \cdot 2 \operatorname{SiO}_2 & = \beta \text{-} 2 \operatorname{CaO} \cdot \operatorname{SiO}_2 \\ \text{gehlenit} & \qquad $	r	48.2		11.9	39.9	1835	
$\begin{array}{c} \alpha \text{-} 3 \ \mathrm{CaO} \cdot 5 \ \mathrm{Al_2O_3} - 2 \ \mathrm{CaO} \cdot \mathrm{Al_2O_3} \cdot \mathrm{SiO_2} - \alpha \text{-} \mathrm{Al_2O_3} \\ \text{gehlenit} - \text{korund} \end{array}$	r	81.2		44.5	24.8	1475	
$\begin{array}{c} 3 \operatorname{CaO} \cdot \operatorname{SiO}_2 - 3 \operatorname{CaO} \cdot \operatorname{Al}_2 O_3 - \alpha \text{-} 2 \operatorname{CaO} \cdot \operatorname{SiO}_2 \\ & \text{kalciumorthosilikat} \end{array}$	r	58.3		33.0	8.7	1455	
$\begin{array}{l} \alpha\text{-CaO} - \ 3\ CaO \cdot SiO_2 - \ 3\ CaO \cdot Al_2O_3 \\ \text{kalclumoksyd} - \ trikalciumsilikat \end{array}$	r •	59.7		82.8	7.5	1470	
α -CaO — α -2 CaO · SiO ₂ — 3 CaO · SiO ₂ kalciumoksyd — kalciumorthosilikat — trikalciumsilikat	r	68.4		9.2	22.4	1900	
$CaO \cdot Al_2O_3 \cdot 2 SiO_2 - \alpha - CaO \cdot SiO_2$ anortit - pseudowollastonit	e	34.1		18.6	47.3	1299	
$CaO \cdot Al_2O_3 \cdot 2 SiO_2 - SiO_2$ anortit - tridymit	е	10.5		19.5	70.0	1359	
$2 \operatorname{CaO} \cdot \operatorname{Al}_2\operatorname{O}_3 \cdot \operatorname{SiO}_2 - 2 \operatorname{CaO} \cdot \operatorname{SiO}_2$ gehlenit — kalciumorthosilikat	е	49.6		23.7	26.7	1545	
$CaO \cdot Al_2O_3 \cdot 2 SiO_2 - \alpha \cdot Al_2O_3$ anortit - korund	е	19.3		39.3	41.4	1547	
$2 \operatorname{CaO} \cdot \operatorname{Al}_2\operatorname{O}_3 \cdot \operatorname{SiO}_2 - \operatorname{CaO} \cdot \operatorname{Al}_2\operatorname{O}_3$ gehlenit	е	87.8		52.9	9.8	1512	
$\begin{array}{c} 2 \operatorname{CaO} \cdot \operatorname{Al_2O_3} \cdot \operatorname{SiO_2} - \alpha \text{-} 3 \operatorname{CaO} \cdot 5 \operatorname{Al_2O_3} \\ \text{gehlenit} \end{array}$	е	35		50.8	14.2	1552	
$\begin{array}{c} CaO \cdot Al_2O_3 \cdot 2 \; SiO_2 - 2 \; CaO \cdot Al_2O_3 \cdot SiO_2 \\ anortit - gehlenit \end{array}$	е	30.2		36.8	83.0	1385	
$\begin{array}{c} 2 \ \mathrm{CaO} \cdot \mathrm{Al_2O_3} \cdot \mathrm{SiO_2} - \alpha \cdot \mathrm{CaO} \cdot \mathrm{SiO_2} \\ \text{gehlenit} - \text{pseudowollastonit} \end{array}$	е	45.7		18.2	41.1	1316	
$\beta\text{-}2~\text{CaO}\cdot\text{SiO}_2 = \alpha\text{-}5~\text{CaO}\cdot\text{-}3~\text{Al}_2\text{O}_3$ kalciumorthosilikat	e	51.3		41.8	6.9	1350	
$\begin{array}{c} CaO \cdot Al_2O_8 \cdot 2 \; SiO_2 - \beta \text{-} MgO \cdot SiO_2 - SiO_2 \\ anortit - klinoenstatit - tridymit \end{array}$	e	10.2	9.4	18.5	61.9	1222	
$\begin{array}{c} CaO \cdot Al_2O_3 \cdot 2 \: SiO_2 \: - \: \beta \text{-} MgO \cdot SiO_2 \: - \: 2 \: MgO \cdot SiO_2 \\ anortit \: - \: klinoenstatit \: - \: forsterit \end{array}$	r	11.0	14.6	20.2	54.2	1260	
2 CaO · Al ₂ O ₃ · SiO ₂ (26 pct.) + 2 CaO · MgO · 2 SiO ₂ (74 pct.) fast opløsning gehlenit — åkermanit	1)	41.1	10.9	9.7	38.3	1388	

.

r	51.5	6.2	43.8	I I	14
е	46	6.3	47.7		13
е	41.5	6.7	51.8		13
r	40.7	6.9	52.4		13
r	83.8	3.5	63.2		15
r	21	5	74		16
е		20.3	18.3	61.4	13
r		10	28.5	66.5	145
r		16.1	34.8	49.1	14
r		25.7	22.8	51.5	13'
e?	N. 4	25	21	54	130
e		56	16	28	170
r		15.2	42	42.8	15
е	30.6	8		61.4	18
r	ca. 81	ca. 8		ca. 61	13
r	81.3	7.2		61.5	13
ŗ	81.4	7.6		61	18
r	86.7	12.3		51	130
е	36	12.6		51.4	13
е	29.8	20.2		50	13
	e r r r e r r e r r e r r r r e r r r e r	e 46 e 41.5 r 40.7 r 33.3 r 21 e 1 r 21 e 1 r 1 e 1 r 1 e 1 r 1 e 30.6 r 31.3 r 31.3 r 31.4 r 36.7 e 36 e 29.8	e466.3e41.56.7r40.76.9r33.33.5r215e20.310r1.016.1r25.725e2556r15.256r30.68r6.37.2e30.68r31.37.2r31.47.6r36.712.3e3612.6e29.820.2	e 46 6.3 47.7 e 41.5 6.7 51.8 r 40.7 6.9 52.4 r 33.3 3.5 63.2 r 21 5 74 e 21 5 74 e 20.3 18.3 r 10 23.5 r 16.1 34.8 r 25.7 22.8 e? 25 21 e 25.6 16 r 15.2 42 e 30.6 8 r 6.3 7.2 e 30.6 8 r 31.3 7.2 r 31.4 7.6 r 36.7 12.3 e 36 12.6 e 29.8 20.2	e466.347.7e41.56.751.8r40.76.952.4r33.33.563.2r21574e20.318.361.4r1023.566.5r16.134.849.1r25.722.851.5e?252154e561628r15.24242.8e30.6861.4r63.137.261.5r31.37.261.5r36.712.351e3612.651.4e3629.820.250

Utgit for Statens Raastofkomité av Norges geologiske Undersøkelse.

.

•

Trykt i A. W. Brøggers Boktrykkeri A-S, Kristiania.

ALMINDELIGE ILDFASTE OKSYDER.

Likevegtsdiagrammer for en-, to- og trekomponentsystemerne.

(Efter Olaf Andersen, Ildfaste oksyders fysikalske kemi, N. G. U. Nr. 101. Reproducert med endel forandringer efter R. B. Sosman, Journ. Ind. Engin. Chem., 8, 1916).

	Al ₂ O ₃ + FeO	$Al_2O_3 + Fe_2O_3$	$Al_2O_3 + CaO$	Al ₂ O ₃ + MgO	
$SiO_{2} + AI_{2}O_{2}$	Minera's H = Heroynite : (apine/)	AL ₂ O ₃	AlzOs	Minerals Alz O3 C = Ceylanite	

100

Utgit for Statens Raastofkomité av Norges geologiske Undersøkelse.

Trykt i A. W. Brøggers Boktrykkeri A-S, Kristiania.