GEOLOGI FOR SAMFUNNET

SIDEN 1858

RAPPORT

Norges geologiske undersøkelse Postboks 6315 Torgarden 7491 TRONDHEIM Tlf. 73 90 40 00

Rapport nr.: 2021.003	ISSN: 0800-3416 (trykt) ISSN: 2387-3515 (online)	Gradering: Åpen		
Tittel:					
Sedimentasjonsmiljø og h	nistorisk utvikling i foru	irensningsstatu	is i sjøområ	dene i Stavanger	
kommune					
Forfatter:		Oppdragsgive	r:		
Jochen Knies, Sigrid Elv	Marine grunnkart i kystsonen				
Fylke:		Kommune:			
Rogaland	Stavanger				
Kartblad (M=1:250.000)	Kartbladnr. og -navn (M=1:50.000)				
Stavanger					
Forekomstens navn og koordinater:		Sidetall: 84	Pris: 2	235,-	
		Kartbilag: 0			
Feltarbeid utført:	Rapportdato:	Prosjektnr.:		Ansvarlig:	
2020	15.02.2021	387901		Vegard Aune	

Sammendrag:

Norges geologiske undersøkelse (NGU) utarbeider i samarbeid med Kartverket og Havforskningsinstituttet (HI) marine grunnkart over sjøområdene i Stavanger kommune i pilotprosjektet Marine grunnkart i kystsonen. Under feltarbeid med F/F Seisma i mai 2020 hentet NGU opp ti korte sedimentkjerneprøver fra utvalgte lokaliteter i sjøområdene i kommunen. Målet med undersøkelsen er å skaffe en oversikt over naturlige sedimentasjonsprosesser i det marine miljøet, og eventuelt påvirkning av menneskelig. For å bestemme om innholdet av skadelige stoffer i overflateprøvene skyldes menneskeskapt forurensning eller ikke, er det viktig å undersøke det naturlige nivået av ulike elementer i havbunnssedimentene over tid. Ved hjelp av kjerneprøver kan vi analysere sedimentene fra de ulike dybdeintervallene for å få fram endringer.

Resultatene viser at de prøvetatte overflatesedimentene er dominert av slam. Organisk karboninnhold er generelt høyt (>2 %), med den høyeste verdien (5,5 %) i ytre Gandsfjorden. Her registrerer vi også de høyeste konsentrasjonene av svovel, alle tungmetaller (bortsett fra krom) og arsen. En mulig årsak kan være den høye tiltrekningen metaller har til organiske forbindelser under generelt reduserende forhold (lavt oksygeninnhold) i vannmassene og i sedimentene. De fleste målingene viser konsentrasjoner i tilstandsklasse I (bakgrunn) og II (god) i henhold til Miljødirektoratets klassifikasjon. I enkelte tilfeller er det registrert høyere konsentrasjoner (klasse III, moderat). Dette gjelder for arsen (6 prøver) og sink (1 prøve).

Tre sedimentbasseng er undersøkt for å se om tilførselen av tungmetaller har økt over tid som et resultat av menneskelig påvirkning: ytre Boknafjorden (prøve 5), Talgjefjorden (prøve 6) og ytre Gandsfjorden (prøve 9). Sedimentasjonshastigheten i bassengene varierer mellom 2.6 (prøve 9) og 6.3 (prøve 5) millimeter per år. Felles for prøve 5 og 6 er at konsentrasjonsprofilene for tungmetaller viser relativt stabilt lave verdier de siste ca. 70 år. Konsentrasjonen av alle elementer er på bakgrunnsnivå og kan regnes som et naturlig signal knyttet til erosjon av jordsmonn og bergarter. I ytre Gandsfjorden er sedimentene i kjernen avsatt mellom ca. 1860 og 2020, og innholdet av tungmetaller er sterkt påvirket av industriell aktivitet. Likheten i tungmetallprofiler tyder på at mye av metallforurensingen har kommet fra den samme kilden. Høy konsentrasjon av alle tungmetaller fram til ca. 1910 kan muligens knyttes til hermetikkvirksomhet og skipsindustri. Gradvis økende tilførsel etter 1973 kan muligens knyttes til ndustri relatert til oljevirksomhet. Prøve 9 fra ytre Gandsfjorden inneholder laminerte, uforstyrrede sedimenter. Dette viser reduserende forhold (lavt oksygeninnhold) i vannet og i sedimentene, noe som forklarer den gode korrelasjonen mellom høyt karboninnhold, og innhold av tungmetaller (Pb, Cu, Zn, Hg) og As.

Emneord:	Maringeologi	Tungmetaller	
Forurensing	Bunnsedimenter	Kjerne	
Datering	Sedimentasjonsmiljø	Miljøtilstand	

NORGES GEOLOGISKE UNDERSØKELSE

RAPPORT

Innhold

1.	INNLEDNING	4
2.	PRØVETAKING, DATA OG METODIKK	6
3.	RESULTATER	9
3.	.1 Overflateprøver	9
	3.1.1 Kornstørrelsesfordeling, organisk karbon, svovel og kalsiumkarbonat	9
	3.1.2 Innhold av arsen, barium og tungmetaller	15
3.	.2 Sedimentkjerneprøver	
	3.2.1 Kronologi og sedimentasjonshastighet	
	3.2.2 Kornfordeling, svovel, organisk karbon og kalsiumkarbonat	
	3.2.3 Tungmetaller og arsen i kjerneprøver	
4.	OPPSUMMERING.	46
5.	REFERANSER	47
6.	VEDLEGG	

1. INNLEDNING

Norges geologiske undersøkelse (NGU) utarbeider i samarbeid med Kartverket og Havforskningsinstituttet (HI) marine grunnkart over sjøområdene i Stavanger kommune i prosjektet Marine grunnkart i kystsonen. Som en del av prosjektet skal miljøtilstanden i kommunen kartlegges.

I mai 2020 gjennomførte NGU feltarbeid med F/F Seisma, og hentet opp korte sedimentkjerner fra ti havbunnslokaliteter i kommunen (Figur 1). Analyse av overflatesedimentenes innhold av tungmetaller gir oss et oversiktsbilde over tilstanden i de ulike delene av studieområdet. I tillegg viser variasjon i tungmetallinnhold i tre kjerneprøver den historiske utviklingen over de siste ca. 150 år.

De ti lokalitetene (Tabell 1) ble valgt ut fra informasjon om dybde og bunnreflektivitet fra kartlegging med multistråleekkolodd. Vi har prioritert å prøveta dype avsetningsbassenger der finkornet materiale samles opp uforstyrret over tid, siden tungmetaller ofte vil binde seg til finkornet materiale og karbon, og avsettes sammen med disse. Noen av prøvelokalitetene er plassert i nærheten av kjente utslippspunkter fra industri og lignende, mens andre ligger i områder der vi ikke forventer å finne direkte menneskelig tilførsel av miljøgifter.

Prøvetakingen foregikk med multicorer (Figur 2), en prøvetaker som tar opptil fire korte sedimentkjerner fra bløtbunn. Kjernene hentes opp i rør som lukkes i topp og bunn slik at det ikke skjer noen gjennomstrømming av vann under opphentingen. Om bord på F/F Seisma ble de uforstyrrede overflatesedimentene fra hver kjerne tatt ut og frosset ned for senere analyse. På hver av de tre lokalitetene 5, 6, og 9 ble én sedimentkjerne forseglet om bord og lagret uforstyrret for videre analyser (kornfordeling, metallsammensetning) og datering med hjelp av ¹⁴C- og ²¹⁰Pb-metoden.

I denne rapporten presenterer vi først nivåene av ulike metaller (inkludert tungmetaller) og kjemiske forbindelser fra overflateprøver (0-2 centimeter dybde i bunnsedimentet) fra de ti utvalgte lokalitetene i studieområdet. Deretter diskuterer vi den historiske variasjonen av de samme forbindelsene i de tre sedimentkjernene over tid. Konsentrasjonen av forurensende stoffer i overflatesedimenter angir dagens miljøstatus, og kan klassifiseres i henhold til Miljødirektoratets klassifikasjonssystem for vann, sediment og biota (M-608, 2016, revidert i 2020).

Figur 1. Lokaliteter med sedimentprøver fra sjøbunnen tatt for kartlegging av miljøtilstanden i Stavanger kommune. Kjerneprøver ble studert fra lokalitet 5, 6 og 9. Dybdedata og landdata fra Kartverket.

Kort stasions			Geografiske	Vanndyp	
Stasjon	Kort stasjons-	Område	(desima	(m)	
	nummer		Nord	Øst	
P2002001	1	Finnøyfjorden	59.1835957	5.9095867	241
P2002002	2	Gardssundfjorden	59.234573	6.0426223	348
P2002003	3	Nedstrandsfjorden	59.3047365	5.8154467	702
P2002004	4	NV for Finnøy	59.2057603	5.7501667	312
P2002005	5	Ytre Boknafjorden	59.1453265	5.5415008	582
P2002006	6	Talgjefjorden	59.1428208	5.7454258	220
P2002007	7	Kvitsøyfjorden	59.0934187	5.5448235	283
P2002008	8	Åmøyfjorden	59.0161058	5.7026293	114
P2002009	9	Ytre Gandsfjorden	58.9438427	5.7725465	240
P2002010	10	Hidlefjorden	59.0606948	5.7561948	115

Tabell 1. Stasjonsnummer, koordinater og vanndyp for lokalitetene i miljøundersøkelsen.

2. PRØVETAKING, DATA OG METODIKK

Prøvene for miljøanalyser ble tatt i avsetningsbassenger med finkornete sedimenter, som oftest i de dypeste områdene av en fjord der bunnstrømmen antas å være svak og avsetningsforholdene stabile. Prøvetakingen ble planlagt ut fra detaljert informasjon om dybde og bunnhardhet fra data innsamlet med multistråleekkolodd. Figur 1 og Tabell 1 gir en oversikt over prøvetakingsstasjoner, dybde og geografiske koordinater.

NGUs multicorer, som ble brukt til prøvetaking, var utstyrt med fire rør på 60 cm lengde med diameter 6,3 cm (Figur 2). Rørene lukkes i topp og bunn idet prøven tas, slik at hver kjerneprøve kommer opp med en uforstyrret sedimentoverflate. Til bruk for analyse av kornfordeling og uorganiske miljøgifter ble de øverste to centimeter av én kjerne per stasjon skåret av med plastspatler og frosset ned i plastposer (Figur 3). Tre kjerner ble senere åpnet ved NGU og prøvetatt på hver centimeter.

Etter gjennomført feltarbeid ble alle overflateprøver sendt i frosset tilstand til NGU-Lab. Her ble prøvene frysetørket og oppbevart på kjølelager inntil prøver til analyse ble tatt ut i juni 2020. Alle analyseresultater er rapportert i Vedlegg I-III. Materiale til følgende analyser ble tatt ut:

- 0,38 g tørt materiale for bestemmelse av totalinnhold av svovel og karbon (TS og TC), og 0,50 g for bestemmelse av organisk karbon (TOC). Analysene ble utført ved hjelp av Leco elementanalysator.
- 1,0 g tørt materiale til HNO₃-ekstraksjon etter NS 4770 for påfølgende analyse med AAS, ICP-AES og ICP-MS.
- Ca. 0,2 g tørt materiale fra slamrike sedimenter, og opp til 3 g fra sandige sedimenter for bestemmelse av kornfordeling mellom 2 mm og 0,4 µm med Coulter laserdiffraksjon.

Figur 2. Prøvetaking med multicorer, som tar opptil 4 kjerner per stasjon. Lukkemekanismen utløses idet prøvetakeren treffer bunnen, og stenger topp og bunn av hvert rør. For hver stasjon er de øverste 2 cm av én kjerne brukt til analyser av sedimentenes kornfordeling og metallsammensetning.

Figur 3. En kjerne fra multicoreren plasseres på en utdriver og skyves forsiktig ut av røret så overflaten kan prøvetas. Her brukes plastspatler siden materialet skal analyseres for innhold av metaller.

3. RESULTATER

3.1 Overflateprøver

I dette kapittelet presenterer vi resultatene av geokjemiske analyser av overflatesedimenter i form av kart over studieområdet. Samtlige analyseresultater finnes i Vedlegg I-III. Målingene angis hovedsakelig i konsentrasjonsenheten mg/kg sediment, som er ekvivalent med ppm (parts per million). Kornstørrelse angis i prosentvis innhold av slam og sand, mens organisk karbon, svovel og kalsiumkarbonat angis i tørrvektprosent.

Analyser av de øverste 2 cm sediment på havbunnen fra 10 lokaliteter er utført for kornstørrelse (prosent sand og slam), innhold av organisk karbon (TOC), svovel (S) og kalsiumkarbonat (CaCO₃), tungmetallene kadmium (Cd), kobber (Cu), krom (Cr), kvikksølv (Hg), nikkel (Ni), bly (Pb) og sink (Zn), samt innhold av elementene arsen (As) og barium (Ba).

3.1.1 Kornstørrelsesfordeling, organisk karbon, svovel og kalsiumkarbonat

Normalt binder finkornige sedimenter med høyt innhold av leir- og siltpartikler og organisk materiale lettere til seg forurensende stoffer enn hva mer grovkornige sedimenter gjør. Avsetningsbassenger med finkornige sedimenter vil dermed være mest representative for miljøtilstanden i et område. I vårt studieområde ser vi ett unntak. Figur 4 viser andelen av slam og sand på hver lokalitet. Slam (<0,063 mm partikkeldiameter), som omfatter silt og leir, er den dominerende fraksjonen i nesten alle overflateprøvene. Sand (0,063-2 mm) utgjør en mindre andel (<20 %), unntatt i en prøve fra Åmøyfjorden (prøve 8).

Figur 4. Fordeling av sand (0,063-2 mm) og slam (<0,063 mm) i overflatesedimentene.

Figur 5. Innhold av totalt organisk karbon (TOC) i overflatesedimentene.

Figur 6. Innhold av svovel (S) i overflatesedimentene.

Figur 5 og 6 viser innholdet av organisk karbon (TOC) og svovel (S) i overflateprøvene (prosent av tørrvekt). TOC-verdiene varierer fra 2,1 til 5,5 % og er lavest i Nedstrandsfjorden (prøve 3) og høyest i ytre Gandsfjorden (prøve 9). Svovelkonsentrasjonen varierer mellom 0,22 % (prøve 8, Åmøyfjorden) og 2,0 % (prøve 9, ytre Gandsfjorden). Lave TOC-verdier kan forklares med forholdsvis høy tilførsel av minerogene sedimenter slik at bunnfallet av marin biomasse og organiske rester blir fortynnet. De høyeste TOC- og S-konsentrasjonene er påvist i sedimentene i ytre Gandsfjorden (prøve 9). Høyt TOC- og S-innhold i denne prøven antyder mindre oksygeninnhold i vannmassene eller sedimentene på grunn av enten høy bioproduktivitet eller tilførsel av biomasse fra land.

Karbon som ikke er av organisk opprinnelse er som regel bundet til karbonatmineraler, hovedsakelig kalsiumkarbonat (CaCO₃). Det antas at kalsiumkarbonat i overflatesedimentene har en biologisk opprinnelse, primært fra bentiske og planktoniske organismer med kalkskall. Prosentandelen av kalsiumkarbonat i sedimentene beregnes ut fra analysene av totalt karbon etter følgende formel:

 $(TC^1 - TOC) \times (CaCO_3/C) = (TC - TOC) \times 8,33$ ¹ TC er innholdet av totalt karbon, målt med LECO.

Andelen av kalsiumkarbonat varierer fra 7,5 til 18,5 vektprosent (Figur 7). Fordelingsmønsteret av kalsiumkarbonat er ikke entydig.

Figur 7. Kalsiumkarbonatkonsentrasjon i overflatesedimentene.

3.1.2 Innhold av arsen, barium og tungmetaller

Dagens system for overvåkning av miljøtilstand i marine sedimenter baserer seg på Forskrift om rammer for vannforvaltningen (Vannforskriften). Miljødirektoratet har utarbeidet grenseverdier for en rekke miljøgifter i vann, sediment og biota (M-608, 2016, revidert i 2020), og et klassifikasjonssystem med følgende klasser:

I	II	III	IV	V
Bakgrunn	God	Moderat	Dårlig	Svært dårlig

I denne rapporten presenterer vi analyseresultatene for arsen (As), barium (Ba) og tungmetallene bly (Pb), kadmium (Cd), kobber (Cu), krom (Cr), kvikksølv (Hg), nikkel (Ni) og sink (Zn) fra overflatesedimenter i studieområdet. I figurene 8-16 er konsentrasjonen av de ulike miljøgiftene visualisert på kart både som absolutte verdier (alle a-figurer) og etter Miljødirektoratets klassifikasjonssystem (alle b-figurer). Tabell 2 gir minimums- og maksimumsverdier for hvert av stoffene, og Tabell 3 viser hvordan de ti lokalitetene samlet fordeler seg etter Miljødirektoratets grenseverdier og klasser. For barium er det ikke utarbeidet grenseverdier for klassifisering, og vi viser kun analyseresultatene som absolutte verdier. Alle verdier finnes også i Vedlegg I.

Arsen (As)

As-konsentrasjonen varierer fra 8,6 til 30,0 mg/kg (Figur 8a). De høyeste konsentrasjonene finnes i sedimentprøve 9 fra ytre Gandsfjorden (30,0 mg/kg). Høye verdier (>25 mg/kg) observeres også i prøvene 2 (Gardssundfjorden), 3 (Nedstrandsfjorden), og 6 (Talgefjorden). Høye verdier, særlig i prøvene 6 og 9, er knyttet til høyt TOC-innhold (Figur 5). Av ti prøver er fire i tilstandsklasse I (bakgrunn) for kyst- og fjordsedimenter (<15 mg/kg sediment, Figur 8b). Prøvene fra Gardssundfjorden (2), Nedstrandsfjorden (3), ytre Boknafjorden (5), Talgjefjorden (6), ytre Gandsfjorden (9) og Hidlefjorden (10) ligger i tilstandsklasse III (18-71 mg/kg sediment, moderat).

Figur 8a. Arsenkonsentrasjon i overflatesedimentene.

Figur 8b. Arsenkonsentrasjon i overflatesedimentene klassifisert i henhold til Vannforskriften.

Figur 9a. Blykonsentrasjon i overflatesedimentene.

Figur 9b. Blykonsentrasjon i overflatesedimentene klassifisert i henhold til Vannforskriften.

<u>Bly (Pb)</u>

Pb-konsentrasjonen i overflatesedimentene varierer fra 35,4 til 91,5 mg/kg (Figur 9a). Prøve 9 (ytre Gandsfjorden) har den høyeste blykonsentrasjonen (91,5 mg/kg). Muligens er anrikningen av bly i sedimentene fra industrivirksomheti Stavanger/Sandnes regionen en forklaring. Figur 9b viser at alle ti prøver har Pb-konsentrasjoner i tilstandsklasse II (25-150 mg/kg sediment, god).

Kadmium (Cd)

Cd-konsentrasjonen varierer fra <0,1 til 0,62 mg/kg (Figur 10a), med en tendens til høyere verdier i sedimenter med høyt innhold av TOC (Figur 5), for eksempel i ytre Gandsfjorden (0,62 mg/kg, prøve 9). I Nedstrandsfjorden (prøve 3) er det også målt høyere verdier (0,3 mg/kg). Åtte av ti prøver har Cd-konsentrasjoner tilsvarende tilstandsklasse I (<0,2 mg/kg sediment, bakgrunn, Figur 10b). I to prøver (ytre Gandsfjorden og Nedstrandsfjorden) faller Cd-konsentrasjonene inn under tilstandsklasse II (0,2-2,5 mg/kg sediment, god).

Kobber (Cu)

Cu er registrert i samtlige prøver, med konsentrasjoner fra 20,9 til 54,5 mg/kg (Figur 11a). Ytre Gandsfjorden (prøve 9) viser den høyeste verdien i hele studieområdet (54,4 mg/kg). En mulig forklaring kan være de ulike industrielle aktiviteter i Stavanger-området. Figur 11b viser at alle prøvene i Stavanger kommune likevel tilhører tilstandsklasse II (20-84 mg/kg sediment, god).

Krom (Cr)

Cr er registrert i samtlige prøver, med konsentrasjoner fra 27,7 til 50,1 mg/kg (Figur 12a). Konsentrasjonen i prøve 5 fra ytre Boknafjorden (50,1 mg/kg) er klart høyere enn det vi finner i de øvrige prøvene. Vi mangler i øyeblikket en forklaring for denne observasjonen. Figur 12b viser at alle prøver tilhører tilstandsklasse I (<60 mg/kg sediment, bakgrunn).

Figur 10a. Kadmiumkonsentrasjon i overflatesedimentene.

Figur 10b. Kadmiumkonsentrasjon i overflatesedimentene klassifisert i henhold til Vannforskriften.

Figur 11a. Kobberkonsentrasjon i overflatesedimentene.

Figur 11b. Kobberkonsentrasjon i overflatesedimentene klassifisert i henhold til Vannforskriften.

Figur 12a. Kromkonsentrasjon i overflatesedimentene.

Figur 12b. Kromkonsentrasjon i overflatesedimentene klassifisert i henhold til Vannforskriften.

Figur 13a. Kvikksølvkonsentrasjon i overflatesedimentene.

Figur 13b. Kvikksølvkonsentrasjon i overflatesedimentene klassifisert i henhold til Vannforskriften.

Kvikksølv (Hg)

Hg-konsentrasjonen i sedimentprøvene varierer fra 0,083 til 0,33 mg/kg. Størst innhold av kvikksølv finner vi i ytre Gandsfjorden (0,33 mg/kg, prøve 9). Litt forhøyede verdier er også målt i Talgjefjorden (prøve 6), Kvitsøyfjorden (prøve 7), Åmøyfjorden (prøve 8), og Hidlefjorden (prøve 10, Fig. 13a). En mulig forklaring er en kombinasjon av mye slam og høy konsentrasjon av organisk karbon hvor kvikksølv kan anrikes veldig lett, særlig for prøvene 9 og 10 (Figur 5). Figur 13b viser at alle prøver tilhører tilstandsklasse II (0,05-0,52 mg/kg sediment, god).

Nikkel (Ni)

Ni-konsentrasjonen varierer fra 30 til 36 mg/kg i de fleste prøver (Figur 14a). I Åmøyfjorden (prøve 8) er Ni-innholdet i overflatesedimentene relativt lavt, 18,6 mg/kg (tilstandsklasse I, <30 mg/kg sediment, bakgrunn, Figur 14b), mens de fleste andre overflateprøver er i tilstandsklasse II (30-42 mg/kg sediment, god).

Sink (Zn)

Zn-konsentrasjonen varierer fra 73 til 193 mg/kg sediment (Figur 15a), med den høyeste verdien i prøve 9 i ytre Gandsfjorden. Klassifisert etter Miljødirektoratets grenseverdier (Figur 15b) plasserer 8 prøver seg i tilstandsklasse II (90-139 mg/kg sediment, god), mens prøve 8 (Åmøyfjorden) tilhører tilstandsklasse I (<90 mg/kg sediment, bakgrunn) og i prøve 9 (ytre Gandsfjorden) er det registrert konsentrasjoner som tilsvarer tilstandsklasse III (139-750 mg/kg sediment, moderat).

Barium (Ba)

Ba-konsentrasjonen i sedimentene kan være påvirket av menneskelig aktivitet, særlig i områder der barytt (bariumsulfat) er brukt som komponent i boreslammet ved boring under vann. Ved utslipp av boreslam kan sedimenter i nærområdet og sedimenter nedstrøms fra utslippsstedet få høye Bakonsentrasjoner, noe som er påvist i Skagerrak og på Trænabanken. Det er sannsynlig at dette kan være relevant i studieområdet siden vi observer et godt, men negativt samsvar (n = 10, R² = 0.8) mellom Ba-konsentrasjonen (97-527 mg/kg) (Figur 15) og Li-konsentrasjonen (19-39 mg/kg, Vedlegg II), noe som tyder på at Ba hovedsakelig er påvirket av menneskelig aktivitet og utslipp. Miljødirektoratet har ikke utarbeidet grenseverdier for barium.

Figur 14a. Nikkelkonsentrasjon i overflatesedimentene.

Figur 14b. Nikkelkonsentrasjon i overflatesedimentene klassifisert i henhold til Vannforskriften.

Figur 15a. Sinkkonsentrasjon i overflatesedimentene.

Figur 15b. Sinkkonsentrasjon i overflatesedimentene klassifisert i henhold til Vannforskriften.

Figur 16. Bariumkonsentrasjon i overflatesedimentene.

Kjemisk stoff	Minimum	Maksimum
Arsen (As) [mg/kg]	8,6	30
Bly (Pb) [mg/kg]	35.4	91.5
Kadmium (Cd) [mg/kg]	< 0,1	0,62
Kobber (Cu) [mg/kg]	20,9	54.5
Krom (Cr) [mg/kg]	27,7	50,1
Kvikksølv (Hg) [mg/kg]	0,084	0,331
Nikkel (Ni) [mg/kg]	18,9	36,1
Sink (Zn) [mg/kg]	72,7	193
Barium (Ba) [mg/kg]	97,1	324

Tabell 2. Minimums- og maksimumsverdier for tungmetaller, arsen og barium(dybdeintervallet 0-2 cm) i overflateprøver av marine sedimenter i Stavanger kommune.

Tabell 3. Grenseverdier for klassifisering av tungmetaller i sediment, basert på Miljødirektoratets veileder M-608 (2016, revidert i 2020) som følger EUs vanndirektiv og den norske vannforskriften. De nye grenseverdiene erstatter Miljødirektoratets grenseverdier i klassifiseringsveilederne TA-2229/2007 og TA-1467/1997 (Veiledere for klassifisering av miljøkvalitet i fjorder og kystfarvann). Uthevet skrift viser antall prøver i hver klasse i overflatesedimentene (0-2 cm for metaller) i studieområdet (Bakke m. fl., 2010; Miljødirektoratets veileder M-608 (2016, revidert i 2020).

Parameter		Forurensingsnivå				
	Under	Ι	II	III	IV	V
	deteksjons	Bak-	God	Moderat	Dårlig	Svært
	-grense	grunn				dårlig
Arsen (mg/kg TS)		< 15	15-18	18-71	71-580	> 580
As		4	0	6	0	0
Bly (mg/kg TS)		< 25	25-150	150-1480	1480-2000	2000-2500
Pb		0	10	0	0	0
Kadmium (mg/kg)	< 0,1	< 0,2	0,2-2,5	2,5-16	16-157	> 157
Cd	2	6	2	0	0	0
Kobber (mg/kg TS)		< 20	20-84	84-84	84-147	> 147
Cu		0	10	0	0	0
Krom (mg/kg TS)		< 60	60-620	620-6000	6000-15500	15500-
Cr		10	0	0	0	25000
						0
Kvikksølv (mg/kg)		< 0,05	0,05-0,52	0,52-0,75	0.75-1,45	> 1,45
Hg		0	10	0	0	0
Nikkel (mg/kg TS)		< 30	30-42	42-271	271-533	> 533
Ni		1	9	0	0	0
Sink (mg/kg TS)		< 90	90-139	139-750	750-6690	> 6690
Zn		1	8	1	0	0

3.2 Sedimentkjerneprøver

Under feltarbeid med F/F Seisma i juni 2020 hentet NGU opp tre korte sedimentkjerner fra utvalgte lokaliteter i Stavanger kommune (Figur 1, Tabell 4). Lokalitetene samsvarer med tre av stasjonene for overflateprøver beskrevet ovenfor. Vi ønsket så langt som mulig å få en jevn geografisk fordeling av kjerneprøvene, og oppsøkte lokaliteter i nærheten av kjente utslippspunkter (industri og lignende) så vel som antatt uforstyrrede områder. Prøvetakingen foregikk med multicorer (Figur 2), som gir en uforstyrret kjerneprøve på opptil femti centimeter lengde i finkornede sedimenter.

	Kort		Geografiske koordinater		Vanndyp
Stasjon	stasjons-	stasjons- Område		(desimalgrader)	
	nummer		Nord	Øst	
P2002005	5	Ytre Boknafjorden	59,1453265	5,5415008	582
P2002006	6	Talgjefjorden	59,1428208	5,7454258	220
P2002009	9	Ytre Gandsfjorden	58,9438427	5,7725465	240

Tabell 4. Stasjonsnummer, koordinater og vanndyp for 3 sedimentkjerner.

I denne rapporten presenterer vi resultatene fra sedimentologiske og geokjemiske analyser av alle tre kjerneprøver fra Stavanger kommune. Geokjemiske måleresultater angis hovedsakelig i konsentrasjonsenheten mg/kg sediment, som tilsvarer ppm (*parts per million*). Vi angir kornstørrelse i prosentvist innhold av leir, silt og sand, mens organisk karbon, svovel og kalsiumkarbonat angis i tørrvektprosent. Alle dataene er vist i Vedlegg II og III.

3.2.1 Kronologi og sedimentasjonshastighet

En sedimentkjerneprøve kan leses som et arkiv over de geokjemiske endringene i havbunnssedimentene over tid. For å nyttiggjøre oss den arkiverte informasjonen trenger vi imidlertid en aldersmodell som kan vise over hvilket tidsrom sedimentene i kjerneprøven er blitt avsatt. Vi bruker både ¹⁴C-datering (karbondatering) av organisk materiale og ²¹⁰Pb-aktiviteten (blydatering) i kjerneprøver for å aldersbestemme sedimentene. Når all tilgjengelig aldersinformasjon kombineres, kan vi rekonstruere sedimentasjonshastigheter (millimeter/år) over tid. Havbunnssedimenter vil som regel komprimeres etter hvert som de begraves av nyere materiale, slik at egenskaper som porøsitet og vanninnhold vil være forskjellige i toppsjiktet versus dypere i kjerneprøven også der avsetningshastigheten har vært stabil over tid. Derfor beregner vi akkumulasjonsrater (kg/m²/år) hvor vi tar hensyn til endringer i disse fysiske egenskapene.

I to kjerneprøver (5 og 9) fra studieområdet fant vi muslingskallfragmenter som egnet seg for ¹⁴Cdatering (Tabell 5). Ved ¹⁴C-datering av marint materiale er det viktig å korrigere for reservoaralder. Marine organismer tar opp karbon fra sjøvannet de lever i snarere enn direkte fra atmosfæren, og dette karbonet kan være gammelt og gi et analyseresultat som er vesentlig eldre enn den reelle alderen til organismen. I studieområdet går vi ut fra en gjennomsnittlig (global) reservoaralder på 550 år og en lokal korreksjon (delta R) på -146 år (Mangerud m.fl. 2006). ¹⁴Cdateringer er regnet om til kalenderår ved hjelp av programvaren CALIB 8.20 (Stuiver m.fl. 2021).
Målingene ble gjennomført av CHRONO Centre ved Queen's University Belfast, Nord-Irland. Resultatene viste seg å være tilstrekkelige for å etablere en aldersmodell for kjerne 9, mens alderen for kjerne 5 er ubrukelig (<1950 år).

Laboratoriet	Kjerne	Dyp i kjernen	¹⁴ C Alder	Feil	Kilde	2s maks. alder	2s maks. alder	Median alder	Reservoar-
ID	Nr.	(cm)	(BP)	margin		(kalibrert)	(kalibrert)	(kalibrert)	alder (år)
UBA-43281	P2002009	40-41	472	±34	Skjell Fragment	1718	1950	1863	550
UBA-43282	P2002005	21-22	234	±34	Skjell Fragment	nd	nd	nd	

Tabell 5. ¹⁴C-dateringer fra kjerneprøve 5 (ytre Boknafjorden) og 9 (ytre Gandsfjorden).

Alderen på de øverste sedimentlagene og sedimentakkumulasjonsrater ble bestemt ved måling av ²¹⁰Pb-aktiviteten i sedimentene. Isotopen ²¹⁰Pb har en halveringstid på 22,3 år. Bakgrunnsverdien for ²¹⁰Pb bestemmes ut fra mengden av ²¹⁰Pb-bakgrunnsstråling (= "supported" ²¹⁰Pb), som er uavhengig av sedimentasjon. Bestemmelsen av ²¹⁰Pb-bakgrunnsstråling skjer på bakgrunn av måling av ²²⁶Ra som vil være i likevekt med supported ²¹⁰Pb. I tillegg til ²¹⁰Pb-datering ble nivået av radioaktive cesiumisotoper (¹³⁷Cs) målt i alle kjernene for å finne hvor dypt i kjernene en ser begynnelsen av atomprøvesprengninger i 1950- og 1960 årene. Prøvesprengningene toppet seg i 1963 og har siden vært kraftig avtagende. Økte konsentrasjoner av ¹³⁷Cs i marine sedimenter viser ikke bare begynnelsen av atomprøvesprengninger, men også radioaktive ulykker i Tsjernobyl (Ukraina) i 1986, og Fukushima (Japan) i 2011.

Dyp i kjerne 5	Alder	Akkumulasjon		
(cm)	år (AD)	(kg/m2/år)		
0	2020			
0.5	2019	3.1		
4.5	2015	3.2		
6.5	2012	3		
8.5	2009	2.8		
10.5	2006	3		
12.5	2003	3.1		
20.5	1990	2.6		
24.5	1981	2.4		
27.5	1976	2.9		

Tabell 6. Alder versus dyp i kjerne 5 (venstre) og 6 (høyere) basert på ²¹⁰Pb- og ¹³⁷Cs-målinger. Akkumulasjonsrater for begge kjerner er angitt.

Dyp i kjerne 6	Alder	Akkumulasjon	
(cm)	år (AD)	(kg/m2/år	
0	2020		
0.5	2019	2.8	
1.5	2017	2.8	
2.5	2016	3	
4.5	2013	3	
6.5	2011	3	
8.5	2007	2.9	
10.5	2003	2.8	
12.5	1999	3.4	
14.5	1994	3	
16.5	1987	2.5	
20.5	1974	3	
21.5	1971	3.7	
24.5	1961	2.8	
27.5	1949	2.5	

Sedimentkjernene 5 og 6 viser en klar tendens til eksponentielt lavere verdier med dybden, noe som indikerer sediment miksing og bioturbasjon i overflaten (Vedlegg II). Eksponentielt lavere verdier observeres under ca. 20 cm kjernedyp. Alder versus dyp i Tabell 6 er tolket ned til 27,5 cm i begge kjernene. Basert på alder og dyp i sedimentene er den gjennomsnittlige sedimentasjonsraten ca. 6,3 millimeter pr. år i kjerne 5 og 3,9 millimeter pr. år i kjerne 6. Akkumulasjonsratene varierer konstant mellom 2,5 og 3,7 kg/m⁻²/år i begge kjerner.

Vi går ut ifra at toppen av hver kjerneprøve representerer status i 2020. Dateringen er underbygget med hjelp av ¹³⁷Cs-isotopkonsentrasjoner (Vedlegg II), som viser et klart maksimum mellom 20,5 og 24,5 cm (årene mellom 1991 og 1981) som muligens kan knyttes til radioaktiv forurensning fra Tsjernobylulykken i 1986.

Kjerne 9 gir ikke troverdige data fra ²¹⁰Pb-målingene (Vedlegg II), og aldersmodellen med en gjennomsnittlig sedimentasjonshastighet på 2,6 millimeter per år er basert på ¹⁴C-dateringen og alderen på sedimentoverflaten (år 2020).

Stasjon	Område	Dybde til datert	Alder (median	Sedimentasjons-
		materiale (mm)	kalenderår)	hastighet
				(mm/år)
5	Ytre Boknafjorden	275	44 (år 1976)	6,3
6	Talgjefjorden	275	71 (år 1949)	3,9
9	Ytre Gandsfjorden	405	157 (år 1863)	2,6

Tabell 7.	Beregnede	sedimentasjon	shastigheter i tro	e daterte kjerneprøver.
-----------	-----------	---------------	--------------------	-------------------------

3.2.2 Kornfordeling, svovel, organisk karbon og kalsiumkarbonat

Sedimentprofilene til de tre kjerneprøvene i studieområdet viser at de representerer ulike avsetningsmiljøer. I det følgende viser vi analyseresultater fra tre lokaliteter (ytre Boknafjorden (kjerne 5), Talgjefjorden (kjerne 6), og ytre Gandsfjorden (kjerne 9).

Kjerneprøvene fra ytre Boknafjorden og Talgjefjorden er hentet fra områder med typisk rolig fjordsedimentasjon. Over 90 % av sedimentene som avsettes her er leire (<0.002 mm) og silt (0,002-0,063 mm). Innholdet av kalsiumkarbonat er mellom 10 og 20 %. En liten økning (~0.5%) i karboninnholdet i begge kjerneprøver ser vi fra de eldste sedimentene til de nyeste. Generelt er karboninnhold i begge kjernene høyt, og varierer mellom 2 og 3 %. Dette viser at fjordsedimenter akkumulerer primært produsert organisk karbon. Svovelinnholdet er konstant lavt, og varierer mellom 0,2 og 0,4 %.

Figur 17. Sedimentegenskaper i kjerneprøve 5 (ytre Boknafjorden) plottet mot dybde i centimeter til venstre og alder til høyre. Grafene viser relativ kornfordeling (leir, silt, og sand målt med laserdiffraksjon), innhold av svovel (TS), innhold av organisk karbon (TOC) og innhold av kalsiumkarbonat (CaCO₃).

Figur 18. Sedimentegenskaper i kjerneprøve 6 (Talgjefjorden) plottet mot dybde i centimeter til venstre og alder til høyre. Grafene viser relativ kornfordeling (leir, silt, og sand målt med laserdiffraksjon), innhold av svovel (TS), innhold av organisk karbon (TOC) og innhold av kalsiumkarbonat (CaCO₃).

I kjerneprøve 9 fra lokaliteten i ytre Gandsfjorden finner vi et eksempel på at avsetningsmiljøet har endret seg i løpet av det tidsrommet som kan leses i prøven. Figur 19 viser at prøven hovedsakelig består av leir og silt (opptil 90 %), bortsett fra i to intervaller med betydelig økt sandinnhold avsatt mellom 1910 og 1950, og mellom 1973 og 1989. Karbon og karbonatinnhold, og konsentrasjon av tungmetaller avtar i det eldste intervallet med høy sandandel. Muligens kan økt sandtilførsel fra land forklare fortynningseffekten. Blydateringen av kjernen viser at eksterne forstyrrelser, for eks. et skred, kan utelukkes for intervallet mellom 1910 og 1950. Foreløpig er det uavklart hva som er årsak til endringen i avsetningsmiljø. Den plutselige økningen i sandinnhold mellom 1973-1979 er muligens et resultat av et skred. Prosentandelen organisk karbon (TOC) er betydelig høyere enn i kjerneprøver fra ytre Boknafjorden og Talgjefjorden, og varierer mellom 1 og 6 %. Det er ingen klar trend, men variasjon i karboninnhold korrelerer med innhold av tungmetaller, arsen og kvikksølv (Figur 22). Svovelinnholdet er veldig høyt (0.5-2 %), og korrelerer stort sett med karboninnhold. Også svingningene i karbonatinnhold (0-20%) følger trenden i karbonkonsentrasjon. Mest sannsynlig skyldes de høye karbon- og svovelkonsentrasjonene reduserende forhold med lite oksygen i vannet eller sedimentene. Det er mulig at enkelte topper i karbonatinnhold skyldes autogen dannelse i forbindelse med reduksjon av sulfat i sedimentene.

Kjerneprøve 9, ytre Gandsfjorden

Figur 19. Sedimentegenskaper i kjerneprøve 9 (ytre Gandsfjorden) plottet mot dybde i centimeter til venstre og alder til høyre. Grafene viser relativ kornfordeling (leir, silt, og sand målt med laserdiffraksjon), innhold av svovel (TS), innhold av organisk karbon (TOC) og innhold av kalsiumkarbonat (CaCO₃).

3.2.3 Tungmetaller og arsen i kjerneprøver

Geokjemiske analyser av overflatesedimenter i studieområdet har gitt oss god oversikt over dagens nivå av tungmetaller på havbunnen i Stavanger kommune (Figurer 8-16). For å kunne si om de verdiene vi observerer skyldes forurensning eller om de er naturlige for området er det imidlertid viktig å vite om tilførselen av tungmetaller har økt med menneskelig påvirkning.

Vi viser her konsentrasjoner av tungmetallene sink (Zn), kobber (Cu), bly (Pb) og kvikksølv (Hg) i tillegg til arsen (As) målt i de tre kjerneprøvene vi har ¹⁴C-og ²¹⁰Pb/¹³⁷Cs dateringer fra: Prøve 5 fra ytre Boknafjorden, prøve 6 fra Talgjefjorden og prøve 9 fra ytre Gandsfjorden (Figur 20, 21 og 22). I Vedlegg III sammenstilles verdiene for Pb, Cu, Zn, As og Hg fra alle tre kjerneprøver.

Felles for kjerneprøvene 5 og 6 er at konsentrasjonsprofilene for Zn, Cu, og Pb viser relativt stabilt lave verdier i begge prøver de siste ca. 70 år (Figur 20 og 21). Derimot viser As-profilen i kjerne 5 en liten stigning fra 10 til 20 ppm ved 11 cm kjernedybde, som tilsvarer ca. år 2006. I kjerne 6 ser vi en liknende stigning mot toppen av kjernen fra ca. år 2016. Det er foreløpig uklart hvorfor økningen i As skjer. Det naturlige arseninnholdet i norsk jord varierer mye, fra 1-50 ppm, med 2-8 ppm som vanlig, naturlig innhold. I motsetning til kjerne 5, som har relativt lave Hg-verdier gjennom hele kjernen, stiger Hg-konsentrasjonen fra ca. 0,1 til 0,2 ppm i kjerne 6 fra ca. år 1984 i Talgjefjorden (Figur 21). Likevel er konsentrasjonen her fortsatt på bakgrunnsnivå og kan regnes som et naturlig signal knyttet til erosjon av jordsmonn og bergarter.

Mer interessant er kjerneprøve 9 fra ytre Gandsfjorden. Dataene viser en sterk variasjon i alle tungmetaller og As (Figur 22). I tillegg viser alle elementer en sterk korrelasjon (Figur 22). Sedimentene i kjernen er avsatt mellom ca. 1860 og 2020, og variasjonen i elementene kan tolkes som varierende industrivirksomhet i et historisk perspektiv. Likheten i tungmetallprofilene tyder på at mye av metallforurensingen historisk har kommet fra den samme kilden. Ifølge Norsk hermetikkmuseum kan forurensing fra disse elementene muligens knyttes til skipsbygging og hermetikkindustrien i Stavanger. Bly ble for eksempel brukt i loddemetall for å lodde lokk på hermetikkbokser fram til ca. 1910. Loddebolter ble laget av kobber som etter hvert ble kastet når de var utslitt. På tinnfabrikken ble brukte hermetikkbokser resirkulert, dermed kom mer bly i systemet, muligens forurenset med arsen. Arsen ble brukt i bronseringsprosessen, som var viktig i forbindelse med produksjon av hermetikkboksetiketter. Kvikksølv ble brukt i bunnstoff på skip og undervannsstrukturer. Høy konsentrasjon av alle disse elementene fram til ca. 1910 kan muligens knyttes til denne virksomheten. Kjerneprøve 9 viser laminerte sedimenter (ikke påvirket av bioturbasjon) stort sett gjennom hele prøven. Det bekrefter reduserende forhold (lavt oksygen) i vannet og i sedimentene, og forklarer den gode korrelasjonen mellom høyt karboninnhold og metaller (Pb, Cu, Zn, Hg) og As.

Figur 20. Tungmetallprofiler (Zn, Cu, Pb, Hg) og As-profil fra kjerneprøve 5 (ytre Boknafjorden) plottet mot dybde i centimeter til venstre og alder til høyre. Merk økningen i arsen rundt år 2003.

Figur 21. Tungmetallprofiler (Zn, Cu, Pb, Hg) og As-profil fra kjerneprøve 6 (Talgjefjorden) plottet mot dybde i centimeter til venstre og alder til høyre.

Figur 22. Tungmetallprofiler (Zn, Cu, Pb, Hg) og As-profil fra kjerneprøve 9 (ytre Gandsfjorden) plottet mot dybde i centimeter til venstre og alder til høyre.

4. OPPSUMMERING

Totalt 10 overflateprøver og 3 sedimentkjerner fra sjøområdene i Stavanger kommune er undersøkt. Målet med undersøkelsen har vært å skaffe en oversikt over naturlige sedimentasjonsprosesser i det marine miljøet, og eventuell påvirkning av menneskelig aktivitet over tid. Kjernene er analysert med henblikk på sedimentsammensetning og innhold av tungmetaller og andre miljøindikatorer.

Resultatene viser at de prøvetatte sedimentene er dominert av slam. Organisk karboninnhold er generelt høyt (>2 %) i alle prøver, med den høyeste verdien (5,5 %) i ytre Gandsfjorden. Her registrerer vi også de høyeste konsentrasjonene av svovel, alle tungmetaller (bortsett fra krom) og arsen. En mulig årsak kan være den høye tiltrekningen metaller har til organiske forbindelser under generelt reduserende forhold (lavt oksygeninnhold) i vannmassene og i sedimentene. Karbonatkonsentrasjonen viser ingen tydelige trender innenfor studieområdet. De fleste målingene viser konsentrasjoner i tilstandsklasse I (bakgrunn) og II (god) i henhold til Miljødirektoratets klassifikasjon. I enkelte tilfeller er det registrert høyere konsentrasjoner (klasse III, moderat). Dette gjelder for arsen (6 prøver) og sink (1 prøve).

Om tilførselen av tungmetaller har økt med menneskelig påvirkning over tid, har vi undersøkt tre sedimentbasseng: ytre Boknafjorden (prøve 5), Talgjefjorden (prøve 6) og ytre Gandsfjorden (prøve 9). I alle tre basseng varierer sediment hastighet mellom 2.6 (prøve 9) og 6.3 (prøve 5) millimeter per år. Felles for prøvene 5 og 6 er at konsentrasjonsprofilene for tungmetaller viser relativt stabilt lave verdier de siste ca. 70 år. Konsentrasjonen for alle elementer er på bakgrunnsnivå og kan regnes som et naturlig signal knyttet til erosjon av jordsmonn og bergarter.

I ytre Gandsfjorden er sedimentene avsatt mellom ca. 1860 og 2020. Tungmetall konsentrasjon kan dermed tolkes som varierende industrivirksomhet i et historisk perspektiv. Likheten i tungmetallprofilene tyder på at mye av metallforurensingen historisk har kommet fra den samme kilden. Høy konsentrasjon av alle tungmetaller fram til ca. 1910 kan muligens knyttes til hermetikk virksomheten og økende skipsindustri. Gradvis økende tilførselen etter 1973 kan muligens knyttes til økende oljevirksomhet i regionen. Prøve 9 fra ytre Gandsfjorden viser laminerte sedimenter som bekrefter reduserende forhold (lavt oksygen) i vannet og i sedimentene, og forklarer den gode korrelasjonen mellom høyt karboninnhold og metaller (Pb, Cu, Zn, Hg) og As.

5. REFERANSER

Bakke, T., Källqvist, T., Ruus, A., Breedveld, G.D., og Hylland, K., 2010. Development of sediment quality criteria in Norway. Journal of Soils and Sediments, Vol. 10, s. 172-178.

Mangerud, J., Bondevik, S., Gulliksen, S., Hufthammer, A.K., og Høisæter, T., 2006. Marine 14C reservoir ages for 19th century whales and molluscs from the North Atlantic. Quaternary Science Reviews, Vol. 25, s. 3228-3245.

Miljødirektoratet veileder M-608, 2016 (revidert i 2020). Grenseverdier for klassifisering av vann, sedimenter og biota. Revidert 30.10.2020. 13 sider.

Stuiver, M., Reimer, P.J., og Reimer, R.W., 2021. Calib 8.2 [www program] at <u>http://calib.org</u>, accessed 2021-3-1

6. VEDLEGG

Vedlegg 1. Analyseresultater fra 10 overflateprøver.

Ν	E	Stasjon	Stasjon_kort	P2002_NGU ID	Water (m)	Depth (cm)	Total Svovel (%)	
59.1835957	5.9095867	001-1-0	1	110463	241	0	0.275	
59.234573	6.0426223	002-1-0	2	110465	348	0	0.346	
59.3047365	5.8154467	003-1-0	3	110468	702	0	0.356	
59.2057603	5.7501667	004-1-0	4	110470	312	0	0.27	
59.1453265	5.5415008	005-1-0	5	110251	582	0	0.337	
59.1428208	5.7454258	006-1-0	6	110308	220	0	0.341	
59.0934187	5.5448235	007-1-0	7	110472	283	0	0.244	
59.0161058	5.7026293	008-1-0	8	110474	114	0	0.227	
58.9438427	5.7725465	009-1-0	9	110335	240	0	2.03	
59.0606948	5.7561948	010-1-0	10	110476	115	0	0.506	

Total Karbon	Organisk Kullstoff	Kalsiumkarbonat	Slam	Sand	Al	As	В
(%)	(%)	(%)	(%)	(%)	mg/kg	mg/kg	mg/kg
3.63	2.34	10.750	96.9	3.1	21000	14.6	86
3.47	2.33	9.500	96.9	3.1	19800	26.4	85
3.72	2.19	12.750	97	3	21700	26.3	93
3.67	2.11	13.000	94.4	5.6	23000	14.3	92
4.24	2.54	14.167	96.5	3.5	23500	24.7	87
5.13	3.05	17.333	95.6	4.4	21100	26.3	92
4.13	2.09	17.000	88.2	11.8	20300	13.0	85
4	2.08	16.000	74.6	25.4	11700	8.6	56
7.72	5.5	18.500	94.6	5.4	15200	30.0	107
6.39	5.25	9.500	94.8	5.2	19700	18.2	115

Ва	Ве	Ca	Cd	Ce	Со	Cr	Cu	Fe	К	La	Li	Mg
mg/kg												
117	1.01	37400	0.11	84.9	15.9	41.3	26.6	33700	8540	35.5	35.2	13000
137	0.93	29600	0.17	80.2	22.9	37.0	30.7	35600	8890	33.5	35.0	14200
152	1.07	36800	0.30	61.3	24.3	44.4	27.4	36100	8970	25.4	36.2	15100
113	1.19	45100	0.14	65.8	15.1	47.8	22.8	33800	8730	26.7	37.5	13600
148	1.26	47100	0.16	59.4	17.7	50.1	23.8	36100	8460	24.5	38.9	14100
158	1.08	56800	0.15	75.0	15.7	45.4	30.2	35200	9380	31.2	37.4	13400
147	1.06	59600	0.13	60.0	11.9	44.5	21.0	28800	7550	24.7	32.3	12000
527	0.58	53200	0.1	59.5	6.3	27.7	24.6	17900	4420	25.3	19.3	7390
324	0.74	56700	0.62	61.5	24.2	40.9	54.5	41100	7460	27.3	28.4	13500
99.1	0.99	50300	0.16	75.6	10.7	49.6	31.5	28800	8160	31.9	31.8	12800

Mn	Na	Ni	Р	Pb	S	Sc	Sr	Ті	V	Y	Zn	Zr
mg/kg												
3090	32100	30.8	968	50.6	3010	6.63	200	1050	77.5	21.6	124	10.7
12800	41900	31.4	1120	53.7	3680	6.30	208	1060	99.1	21.2	134	7.8
12200	43600	35.4	902	55.1	3850	6.27	225	605	120	16.5	120	9.4
1620	33600	33.5	767	55.6	3090	6.63	207	560	83.6	16.5	110	12.9
3800	28900	36.1	790	66.1	2600	6.71	229	421	102	15.7	109	13.7
3070	32300	32.6	1150	57.6	3320	6.56	283	773	96.6	19.0	128	11.0
869	27800	30.3	712	44.5	2820	5.88	270	478	70.8	15.4	91.9	12.9
346	19400	18.9	812	35.4	2340	3.46	249	476	41.9	14.5	72.7	9.8
12900	46600	32.0	1540	91.5	19300	4.36	363	617	161	16.9	193	12.2
658	35300	33.8	1110	48.8	5240	6.17	256	773	72.2	19.5	117	10.8

Hg	
mg/kg	
0.088	
0.087	
0.090	
0.084	
0.084	
0.107	
0.091	
0.176	
0.331	
0.094	

Vedlegg 2. Bly- og Cesium-resultater fra tre sedimentkjerner pluss resultater fra to AMS14C dateringer.

Gamma Dating Center Copenhagen

Copenhagen, December 16th, 2020

Thorbjørn J. Andersen Department of Geosciences and Natural Resource Management (IGN) University of Copenhagen Oester Voldgade 10 1350 Copenhagen K e-mail <u>tja@ign.ku.dk</u> phone +45 35 32 25 03 fax +45 35 32 25 01

Dating of core 005

Dating of core 005

Methods

The samples have been analysed for the activity of ²¹⁰Pb, ²²⁶Ra and ¹³⁷Cs via gammaspectrometry at the Gamma Dating Center, Institute of Geography, University of Copenhagen. The measurements were carried out on a Canberra ultralow-background Ge well-detector. ²¹⁰Pb was measured via its gamma-peak at 46,5 keV, ²²⁶Ra via the granddaughter ²¹⁴Pb (peaks at 295 and 352 keV) and ¹³⁷Cs via its peak at 661 keV.

Results

The core showed surface contents of unsupported ²¹⁰Pb of around 230 Bq kg⁻¹ with a clear tendency for exponential decline with depth (fig 1). The calculated flux of unsupported ²¹⁰Pb is 696 Bq m⁻² y⁻¹ which is about 5 times higher than the expected flux (based on data shown in Appleby, 2001). This indicates that the site is subject to intense sediment focusing.

The content of the isotope ¹³⁷Cs was generally low and showed a minor peak at a depth of about 25 cm.

CRS-modelling has been applied on the profile using a modified method (Appleby, 2001; Andersen 2017) where the activity below the lowermost sample (28 cm) is calculated on the basis of the regression shown in fig 2. The result is given in table 2 and fig 3 and 4.

The chronology given in table 2 is only valid if bioturbation and other sediment mixing is negligible. If this is not the case, ages given in table 2 are underestimated and accumulation rates are overestimated. However, the exponential decline in unsupported ²¹⁰Pb with depth gives confidence in the result and the ²¹⁰Pb-based chronology places the ¹³⁷Cs peak at 1981 \pm 5 years which is consistent with the expected Chernobyl origin of this material. The chronology is therefore believed to be accurate.

Analysis of more samples from the core will probably increase the precision but is not expected to change the chronology significantly.

Thorbjørn J Andersen Professor, IGN, University of Copenhagen Oester Voldgade 10, 1350 Copenhagen K, Denmark

References:

Andersen, T.J., 2017. Some Practical Considerations Regarding the Application of ²¹⁰Pb and ¹³⁷Cs Dating to Estuarine Sediments. Applications of Paleoenvironmental Techniques in Estuarine Studies . Developments in Paleoenvironmental Research (DPER), Vol. 20, p 121-140.

Appleby, P.G., 2001. Chronostratigraphic techniques in recent sediments. In: Last, W.M & Smol, J.P. (eds) Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring and chronological techniques. Kluwer Academic Publishers, the Netherlands.

Table 1. Raw data, core 005

Depth	Pb- 210tot	error Pb- 210 tot	Pb-210 sup	error pb- 210 sup	Pb-210 unsup	error Pb- 210 unsup	Cs-137	error Cs-137
cm	Bq kg-1	Bq kg-1	Bq kg-1	Bq kg-1	Bq kg-1	Bq kg-1	Bq kg-1	Bq kg-1
0.50	241	14	18	2	223	15	3	1
4.50	196	12	19	3	177	15	5	1
6.50	211	19	14	9	197	29	3	2
8.50	193	14	19	0	174	14	6	1
10.50	155	14	19	4	136	18	2	2
12.50	163	13	19	5	143	18	5	2
20.50	133	11	19	3	114	14	8	2
24.50	103	11	19	1	84	12	13	2
27.50	63	6	15	2	48	8	7	1

Table 2. Chronology core 005

Depth	Age	error age	Date	acc rate	error rate
cm	у	у	у	(kg m-2 y-1)	(kg m-2 y-1)
			2020		
0.5	1	2	2019	3.1	0.3
4.5	5	2	2015	3.2	0.3
6.5	8	2	2012	3.0	0.5
8.5	11	3	2009	2.8	0.3
10.5	14	3	2006	3.0	0.5
12.5	17	3	2003	3.1	0.4
20.5	30	4	1990	2.6	0.5
24.5	39	5	1981	2.4	0.5
27.5	44	6	1976	2.9	0.6

Fig 2. Regression of unsupported ²¹⁰Pb vs accumulated dry density.

Gamma Dating Center Copenhagen

Copenhagen, December 15th, 2020

Thorbjørn J. Andersen Department of Geosciences and Natural Resource Management (IGN) University of Copenhagen Oester Voldgade 10 1350 Copenhagen K e-mail <u>tja@ign.ku.dk</u> phone +45 35 32 25 03 fax +45 35 32 25 01

Dating of core 006

Dating of core 006

Methods

The samples have been analysed for the activity of ²¹⁰Pb, ²²⁶Ra and ¹³⁷Cs via gammaspectrometry at the Gamma Dating Center, Institute of Geography, University of Copenhagen. The measurements were carried out on a Canberra ultralow-background Ge-detector. ²¹⁰Pb was measured via its gamma-peak at 46,5 keV, ²²⁶Ra via the granddaughter ²¹⁴Pb (peaks at 295 and 352 keV) and ¹³⁷Cs via its peak at 661 keV.

Results

The core showed surface contents of unsupported ²¹⁰Pb of around 260 Bq kg⁻¹ with a clear tendency for exponential decline with depth (fig 1). The calculated flux of unsupported ²¹⁰Pb is 753 Bq m⁻² y⁻¹ which is about 5 times higher than the expected flux (based on data shown in Appleby, 2001). This indicates that the site is subject to intense sediment focusing.

The content of the isotope ¹³⁷Cs was low and showed no distinct peaks.

CRS-modelling has been applied on the profile using a modified method (Appleby, 2001; Andersen 2017) where the activity below the lowermost sample (28 cm) is calculated on the basis of the regression shown in fig 2. The result is given in table 2 and fig 3.

The chronology given in table 2 is only valid if bioturbation and other sediment mixing is negligible. If this is not the case, ages given in table 2 are underestimated and accumulation rates are overestimated. However, the exponential decline in unsupported ²¹⁰Pb with depth gives confidence in the result and the chronology is believed to be accurate.

Thorbjørn J Andersen Professor, IGN, University of Copenhagen Oester Voldgade 10, 1350 Copenhagen K, Denmark

References:

Andersen, T.J., 2017. Some Practical Considerations Regarding the Application of ²¹⁰Pb and ¹³⁷Cs Dating to Estuarine Sediments. Applications of Paleoenvironmental Techniques in Estuarine Studies . Developments in Paleoenvironmental Research (DPER), Vol. 20, p 121-140.

Appleby, P.G., 2001. Chronostratigraphic techniques in recent sediments. In: Last, W.M & Smol, J.P. (eds) Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring and chronological techniques. Kluwer Academic Publishers, the Netherlands.

Depth	Pb-210tot	error Pb-210 tot	Pb-210 sup	error pb- 210 sup	Pb-210 unsup	error pb- 210 unsup	Cs-137	error Cs- 137
cm	Bq kg-1	Bq kg-1	Bq kg-1	Bq kg-1	Bq kg-1	Bq kg-1	Bq kg-1	Bq kg-1
0.5	296	22	33	1	263	23	0	0
1.5	272	18	30	11	242	29	7	3
2.5	232	14	28	5	203	19	7	3
4.5	244	19	24	13	219	32	8	5
6.5	205	16	28	4	177	20	3	4
8.5	215	16	22	4	193	20	6	4
10.5	170	13	19	0	151	14	10	4
12.5	129	10	28	17	101	27	9	4
14.5	158	12	18	7	139	20	7	4
16.5	130	11	26	5	103	16	8	4
20.5	73	6	27	3	46	9	11	2
21.5	76	7	28	8	48	14	7	3
24.5	80	6	26	4	54	10	12	2
27.5	53	5	27	5	26	10	4	2

Table 1. Raw data, core 006

Table 2, chronology core 006

Depth	Age	error	Date	acc rate	error rate
		age			
cm	у	у	у	(kg m-2 y-1)	(kg m-2 y-1)
			2020		
0.5	1	1	2019	2.8	0.3
1.5	3	2	2017	2.8	0.4
2.5	4	2	2016	3.0	0.3
4.5	7	2	2013	3.0	0.5
6.5	9	2	2011	3.0	0.4
8.5	13	2	2007	2.9	0.3
10.5	17	2	2003	2.8	0.3
12.5	21	2	1999	3.4	0.9
14.5	26	3	1994	3.0	0.5
16.5	33	3	1987	2.5	0.4
20.5	46	4	1974	3.0	0.7
21.5	49	4	1971	3.7	1.0
24.5	59	5	1961	2.8	0.7
27.5	71	7	1949	2.5	0.6

Fig 1

Fig 2. Regression of unsupported ²¹⁰Pb vs accumulated dry density.

Gamma Dating Center Copenhagen

Copenhagen, December 15th, 2020

Thorbjørn J. Andersen Department of Geosciences and Natural Resource Management (IGN) University of Copenhagen Oester Voldgade 10 1350 Copenhagen K e-mail <u>tja@ign.ku.dk</u> phone +45 35 32 25 03 fax +45 35 32 25 01

Dating of core 009

Dating of core 009

Methods

The samples have been analysed for the activity of ²¹⁰Pb, ²²⁶Ra and ¹³⁷Cs via gammaspectrometry at the Gamma Dating Center, Institute of Geography, University of Copenhagen. The measurements were carried out on a Canberra ultralow-background Ge well-detector. ²¹⁰Pb was measured via its gamma-peak at 46,5 keV, ²²⁶Ra via the granddaughter ²¹⁴Pb (peaks at 295 and 352 keV) and ¹³⁷Cs via its peak at 661 keV.

Results

The core showed surface contents of unsupported ²¹⁰Pb of around 40 Bq kg⁻¹ with a very irregular depth profile (fig 1) with no tendency for decline with depth (fig 2). The irregular profile and lack of decline with depth makes it impossible to calculate any reliable chronology for the core. The data indicates that the sedimentation rate is very high and/or the site is subject to intense sediment mixing.

Thorbjørn J Andersen Professor, IGN, University of Copenhagen Oester Voldgade 10, 1350 Copenhagen K, Denmark

References:

Andersen, T.J., 2017. Some Practical Considerations Regarding the Application of ²¹⁰Pb and ¹³⁷Cs Dating to Estuarine Sediments. Applications of Paleoenvironmental Techniques in Estuarine Studies . Developments in Paleoenvironmental Research (DPER), Vol. 20, p 121-140.

Appleby, P.G., 2001. Chronostratigraphic techniques in recent sediments. In: Last, W.M & Smol, J.P. (eds) Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring and chronological techniques. Kluwer Academic Publishers, the Netherlands.

Depth	Pb-210tot	error Pb-210	Pb-210 sup	error pb-210	Pb-210	error pb-210	Cs-137	error Cs-137
		τοτ		sup	unsup	unsup		
cm	Bq kg-1	Bq kg-1	Bq kg-1	Bq kg-1	Bq kg-1	Bq kg-1	Bq kg-1	Bq kg-1
0.5	72	8	28	1	44	8	8	2
2.5	45	5	30	2	14	7	2	1
6.5	95	8	19	10	76	18	9	1
10.5	33	3	26	1	7	4	4	1
14.5	36	3	23	2	12	5	3	0
20.5	49	6	28	4	20	9	6	2
25.5	82	6	23	1	59	7	10	1
28.5	64	7	23	2	41	9	9	2

Table 1. Raw data, core 009

Fig 2. Regression of unsupported ²¹⁰Pb vs accumulated dry density.

UBANo	Sample ID	Material Type	¹⁴ C Age	±	F14C	±	mg Graphite
UBA-43281	009-1, 40-41	Shell fragment	472	34	0.9430	0.0039	0.855
UBA-43282	005-2, 21-22	Shell fragment	234	34	0.9713	0.0041	0.790

Jochen Knies Geological Survey of Norway Postboks 6315 Sluppen Leiv Eirikssons vei 39 Trondheim 7490 Norway

¹⁴CHRONO Centre Queens University Belfast
42 Fitzwilliam Street Belfast BT9 6AX Northern Ireland

Radiocarbon Date Certificate

Laboratory Identification:	UBA-43281
Date of Measurement:	2020-08-17
Site:	
Sample ID:	009-1, 40-41
Material Dated:	shell or other carbonates
Pretreatment:	Acid Etch
mg Graphite:	0.855
Submitted by:	Jochen Knies

Conventional ¹⁴C Age: 472±34 BP using AMS Fraction corrected δ¹³C Jochen Knies Geological Survey of Norway Postboks 6315 Sluppen Leiv Eirikssons vei 39 Trondheim 7490 Norway

¹⁴CHRONO Centre Queens University Belfast
42 Fitzwilliam Street Belfast BT9 6AX Northern Ireland

Radiocarbon Date Certificate

Laboratory Identification:	UBA-43282
Date of Measurement:	2020-08-17
Site:	
Sample ID:	005-2, 21-22
Material Dated:	shell or other carbonates
Pretreatment:	Acid Etch
mg Graphite:	0.790
Submitted by:	Jochen Knies
	4

Conventional ¹⁴C Age: 234±34 BP using AMS Fraction corrected δ¹³C

Marine samples will require re-calibration with the marine calibration curve

2 RADIOCARBON CALIBRATION PROGRAM* CALIB REV8.2 Copyright 1986-2020 M Stuiver and PJ Reimer *To be used in conjunction with: Stuiver, M., and Reimer, P.J., 1993, Radiocarbon, 35, 215-230. UBA-43281 43281 Radiocarbon Age BP 472 +/-34 Calibration data set: intcal20.14c # Reimer et al. 2020 % area enclosed cal AD age ranges relative area under probability distribution cal AD 1423- 1448 68.3 (1 sigma) 1.000 95.4 (2 sigma) cal AD 1406- 1461 0.986 1463- 1469 0.014 Median Probability: 1435 UBA-43282 43282 Radiocarbon Age BP 234 +/- 34 Calibration data set: intcal20.14c # Reimer et al. 2020 % area enclosed cal AD age ranges relative area under probability distribution cal AD 1640- 1672 0.525 68.3 (1 sigma) 1744- 1748 0.027 1766- 1773 0.046 1778- 1798 0.325 1942- 1950* 0.077 95.4 (2 sigma) cal AD 1526- 1556 0.057 1632- 1687 0.440 1730- 1807 0.414 1925- 1950* 0.089 Median Probability: 1719

References for calibration datasets:

Reimer P, Austin WEN, Bard E, Bayliss A, Blackwell PG, Bronk Ramsey C, Butzin M Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg A Kromer B, Manning SW, Muscheler R, Palmer JG, Pearson C, van der Plicht J, Reim Richards DA, Scott EM, Southon JR, Turney CSM, Wacker L, Adolphi F, Büntgen U, Fahrni S, Fogtmann-Schulz A, Friedrich R, KÃ9hler P, Kudsk S, Miyake F, Olsen J Sakamoto M, Sookdeo A, Talamo S. 2020.

The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kB Radiocarbon 62. doi: 10.1017/RDC.2020.41.

Comments: * This standard deviation (error) includes a lab error multiplier. ** 1 sigma = square root of (sample std. dev.^2 + curve std. dev.^2) ** 2 sigma = 2 x square root of (sample std. dev.^2 + curve std. dev.^2) where ^2 = quantity squared. [] = calibrated range impinges on end of calibration data set 0* represents a "negative" age BP 1955* or 1960* denote influence of nuclear testing C-14

NOTE: Cal ages and ranges are rounded to the nearest year which may be too precise in many instances. Users are advised to round results to the nearest 10 yr for samples with standard deviation in the radiocarbon age greater than 50 yr.
Posterior Probability Distributions

cal AD

<>

Vedlegg 3. Analyseresultater fra 3 kjerneprøver (stasjon 5, 6, og 9).

Tokt P2002	NGU ID	Depth	TS	ТС	тос	CaCO3	Clay	Silt
Kjerne Nr	Prøvenummer	cm	wt%	wt%	wt%	wt%	wt%	wt%
5	110251	0	0.337	4.24	2.54	14.17	26.6	69.9
5	110252	1.0	0.245	4.23	2.53	14.17	26.2	70.7
5	110253	2	0.227	4.06	2.37	14.08	26.6	70.8
5	110254	3.0	0.209	3.90	2.33	13.08	26.5	71.3
5	110255	4	0.203	4.00	2.46	12.83	26.7	70.4
5	110256	5.0	0.187	4.00	2.42	13.17	26	70.3
5	110257	6	0.168	3.95	2.24	14.25	26.9	70.3
5	110258	7.0	0.171	4.11	2.26	15.42	26.7	70.6
5	110259	8	0.195	3.71	2.53	9.83	27.6	69.7
5	110260	9.0	0.205	3.96	2.39	13.08	26.3	69.9
5	110261	10	0.204	3.99	2.40	13.25	26.4	69.9
5	110262	11.0	0.212	3.91	2.37	12.83	26.5	70.3
5	110263	12	0.191	3.98	2.53	12.08	26.4	69.6
5	110264	13.0	0.178	3.92	2.33	13.25	27.2	70.3
5	110265	14	0.161	3.80	2.19	13.42	27.1	70.4
5	110266	15.0	0.181	3.82	2.34	12.33	26.9	70.1
5	110267	16	0.174	3.94	2.15	14.92	27	70.2
5	110268	17.0	0.181	3.86	2.38	12.33	27	70.3
5	110269	18	0.249	3.89	2.41	12.33	27.5	70
5	110270	19.0	0.240	3.84	2.33	12.58	27.1	69.8
5	110271	20	0.252	3.83	2.19	13.67	27.9	71
5	110272	21.0	0.228	3.88	2.31	13.08	27.4	70
5	110273	22	0.260	3.88	2.14	14.50	27.6	69.9
5	110274	23.0	0.233	3.88	2.14	14.50	27.4	69.5
5	110275	24	0.244	3.72	2.10	13.50	27.9	70.1
5	110276	25.0	0.292	3.79	2.04	14.58	27.3	69.9
6	110308	0	0.341	5.13	3.05	17.33	20.4	75.2
6	110309	1.0	0.287	4.79	2.92	15.58	20.2	75.5
6	110310	2	0.307	4.39	2.81	13.17	20.9	75.4
6	110311	3.0	0.302	4.80	2.85	16.25	21.1	75.7
6	110312	4	0.316	4.36	2.78	13.17	19.9	76.4
6	110313	5.0	0.311	4.75	2.83	16.00	20.9	75.6
6	110314	6	0.306	4.65	2.79	15.50	21	75.8
6	110315	7.0	0.369	4.31	2.79	12.67	21.1	75
6	110316	8	0.363	4.35	2.77	13.17	21.8	75.2
6	110317	9.0	0.359	4.28	2.76	12.67	21	75.4
6	110318	10	0.347	4.91	2.77	17.83	20.6	75.1
6	110319	11.0	0.377	4.35	2.74	13.42	20.9	75.4
6	110320	12	0.409	4.27	2.67	13.33	20.9	75.1
6	110321	13.0	0.367	4.69	2.71	16.50	20.3	75.4
6	110322	14	0.373	4.37	2.74	13.58	21.2	75.1
6	110323	15.0	0.371	4.31	2.74	13.08	20.8	75.4
6	110324	16	0.353	4.57	2.71	15.50	21.4	75.5
6	110325	17.0	0.374	4.80	2.74	17.17	21.4	74.5
6	110326	18	0.351	4.27	2.68	13.25	21.4	75.3
6	110327	19.0	0.330	4.14	2.66	12.33	20.8	75.9
6	110328	20	0.373	4.23	2.61	13.50	21.4	74.6

6	110329	21.0	0.346	4.17	2.59	13.17	21.3	75.6
6	110330	22	0.327	4.28	2.59	14.08	21.6	75.4
6	110331	23.0	0.349	4.16	2.55	13.42	21.2	75
6	110332	24	0.316	4.36	2.53	15.25	21.1	75.3
6	110333	25.0	0.303	4.18	2.51	13.92	21.2	75.2
6	110334	26	0.339	3.94	2.46	12.33	20.7	74.8
9	110335	0	2.03	7.72	5.50	18.50	7.73	76.47
9	110336	1.0	0.602	3.25	2.38	7.25	12.4	82.2
9	110337	2	0.498	2.84	2.16	5.67	8.81	85.79
9	110338	3.0	0.608	3.05	2.08	8.08	10.4	77.9
9	110339	4	0.753	3.02	2.14	7.33	6.02	78.48
9	110340	5.0	1.93	4.01	2.71	10.83	6.11	80.79
9	110341	6	1.21	3.94	3.14	6.67	7.03	82.07
9	110342	7.0	0.515	2.69	1.98	5.92	10.2	74.4
9	110343	8	0.486	2.96	2.15	6.75	9.92	71.68
9	110344	9.0	0.763	2.83	2.01	6.83	11.2	72.9
9	110345	10	0.956	4.84	3.14	14.17	3.47	52.63
9	110346	11.0	0.590	3.73	2.63	9.17	2.52	38.78
9	110347	12	0.491	2.99	2.55	3.67	12.4	84
9	110348	13.0	0.465	2.90	2.51	3.25	11.9	83.8
9	110349	14	0.677	3.52	3.16	3.00	11	78.7
9	110350	15.0	1.59	3.65	1.86	14.92	5.35	74.05
9	110351	16	1.57	6.24	3.76	20.67	9.3	80.3
9	110352	17.0	0.830	3.86	2.64	10.17	11.5	77
9	110353	18	0.557	2.77	2.31	3.83	10.9	75
9	110354	19.0	0.373	2.27	1.68	4.92	9.84	68.86
9	110355	20	0.373	2.33	1.91	3.50	9.37	69.83
9	110356	21.0	0.411	2.57	2.31	2.17	8.6	70
9	110357	22	0.177	1.29	0.912	3.15	3.92	37.78
9	110358	23.0	0.194	1.24	0.969	2.26	4.31	35.19
9	110359	24	0.240	1.50	1.18	2.67	3.1	41.7
9	110360	25.0	0.333	2.51	2.10	3.42	6.38	55.82
9	110361	26	0.311	2.42	2.07	2.92	3.99	52.31
9	110362	27.0	0.373	3.14	2.58	4.67	8.45	59.35
9	110363	28	0.314	2.32	1.84	4.00	6.41	58.09
9	110364	29.0	0.411	3.14	2.21	7.75	8.72	69.58
9	110365	30	0.957	5.62	4.16	12.17	14.1	80.6
9	110366	31.0	0.685	4.66	3.28	11.50	12.3	76.5
9	110367	32	0.641	3.62	3.01	5.08	12.4	80.1
9	110368	33.0	0.773	4.42	3.23	9.92		
9	110369	34	0.713	3.52	2.54	8.17	11.7	81.5
9	110370	35.0	0.660	4.49	3.29	10.00	12.2	80.7
9	110371	36	0.723	5.57	3.91	13.83	11.3	81.1
9	110372	37.0	0.890	6.85	5.19	13.83	15.7	80.1
9	110373	38	1.17	7.34	5.74	13.33	16.5	79.5
9	110374	39.0	1.01	7.18	5.29	15.75	16.3	78.7
9	110375	40.0	1.800	7.12	5.10	16.83	15.7	79.2
9	110376	41	1.11	7.12	5.64	12.33	16.7	79.5
9	110377	42.0	1.00	7.32	5.64	14.00	16.5	79.3

Sand	Al	As	В	Ва	Ве	Са	Cd	Ce
wt%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
3.5	23500	24.7	87	148	1.26	47100	0.16	59.4
3.1	24800	23.5	93	157	1.34	50200	0.11	62.7
2.6	24600	19.8	92	152	1.33	50000	0.10	62.8
2.2	24600	22.2	93	152	1.33	51100	<0.1	62.9
2.9	24800	23.8	92	155	1.35	52600	0.12	62.8
3.7	25400	22.6	93	155	1.37	51300	0.14	64.7
2.8	25300	20.0	91	153	1.36	51900	0.14	64.9
2.7	26100	19.9	93	157	1.40	52300	0.16	66.4
2.7	26000	16.6	92	156	1.39	52300	0.11	66.1
3.8	26000	16.2	91	156	1.38	52100	0.12	65.2
3.7	26100	16.3	92	150	1.40	52400	0.12	64.9
3.2	26100	17.6	92	152	1.38	51900	0.12	64.6
4	26200	18.4	93	153	1.40	52100	0.12	65.6
2.5	26500	11.7	91	146	1.41	52100	0.13	64.9
2.5	26800	10.2	93	145	1.43	52100	0.12	65.7
3	27100	10.2	94	145	1.44	52500	0.16	66.6
2.8	27100	9.8	93	143	1.44	51700	0.14	66.8
2.7	27100	10.1	94	141	1.45	52000	0.14	66.8
2.5	27300	10.1	95	144	1.48	52500	0.12	66.2
3.1	26600	9.7	93	138	1.44	50900	0.13	65.8
11	26800	10.0	94	138	1 44	51400	0.14	65.9
2.6	27100	10.0	95	130	1 47	50700	0.18	67.1
2.5	27200	10.1	95	119	1 48	50200	0.15	66.4
3.1	27300	10.5	96	115	1 48	50400	0.15	66.3
2	26800	91	93	105	1.40	49700	0.13	65.9
28	20000	11 2	95	101	1.47	50100	0.14	65.9
2.0	27400	11.2	55	101	1.40	50100	0.15	05.5
ΔΔ	21100	26.3	92	158	1 08	56800	0 15	75.0
л. т И З	22700	26.5	96	13/	1.00	19100	0.15	79.5
ч.5 З 7	22700	9.6	95	123	1 18	50100	0.10	81 3
3.7	23400	12.6	95	123	1.10	50300	0.15	82.0
3.7	23400	13.6	100	124	1.15	50100	0.17	81.6
25	23000	10.6	00	124	1.15	50700	0.13	01.0 91.6
3.5	23400	2 0.0	96	125	1.19	51800	0.14	81.0 81.7
2.0	23200	0.0	96	123	1.21	51700	0.14	01.7 02.2
2.5	23800	9.2 8 0	96	124	1.21	52000	0.15	83.5 87 /
36	23700	0.9 Q Q	90	120	1.22	54000	0.10	02.4 92.1
J.U 1 D	23000	0.9	92	110	1.21	62000	0.10	02.1 77 0
4.5	21900	0.0	95	121	1.15	60400	0.12	77.0
5.7	22500	9.1	94	121	1.17	77000	0.10	79.5
4	21000	9.5	91	114	1.09	77000	0.15	/5.Z
4.3 2 7	23100	Э.Ŏ О Г	90	110	1.21	50/00	0.17	02.0 02.5
3.7	22900	9.5	94	110	1.20	57200	0.14	82.5
3.ð	22900	9.6	93	110	1.19	53400	0.17	82.5
3.1	23000	9.2	94	113	1.21	52/00	0.15	82.1
4.1	23300	9.5	95	116	1.22	53100	0.14	82.4
3.3	23300	8.9	95	116	1.22	52/00	0.15	82.1
3.3	23400	9.9	95	105	1.23	52900	0.13	82.1
4	23900	10.7	96	96.1	1.26	49500	0.16	83.4

3 1	23800	91	96	95.0	1 26	48900	0 15	83 1
3	23700	8.4	95	95.4	1.24	49200	0.13	83.1
3.8	23600	8.5	95	90.9	1.26	48500	0.14	83.2
3.6	24100	7.8	96	96.3	1 27	50300	0.12	84 5
3.6	24000	73	95	95 O	1 25	49400	0.12	83.4
3.0 4.5	24000	7.5	96	90.3	1.25	48800	0.12	83.4 83.4
ч.5	24100	7.0	50	50.5	1.20	40000	0.11	05.4
15.8	15200	30.0	107	324	0.74	56700	0.62	61.5
5.4	14700	23.5	104	335	0.72	59400	0.53	60.2
5.4	11300	15.0	75	335	0.57	42200	0.38	47.4
11.7	13200	16.0	85	328	0.66	49500	0.43	54.1
15.5	16100	20.4	106	433	0.80	65200	0.52	67.0
13.1	15300	21.0	103	588	0.75	65600	0.54	62.4
10.9	15900	22.6	104	492	0.79	68800	0.65	65.3
15.4	15500	19.9	101	789	0.77	56500	0.47	65.1
18.4	11400	8.3	55	269	0.54	31000	0.17	67.3
15.9	14100	9.5	56	247	0.63	27900	0.18	73.9
43.9	16400	13.1	85	391	0.78	48900	0.29	72.3
58.7	19600	11.1	75	223	0.87	27600	0.28	87.7
3.6	19300	11.0	67	156	0.82	22300	0.16	89.0
4.3	18000	10.7	64	173	0.77	21900	0.19	86.3
10.3	15000	11.7	64	1480	0.67	29900	0.24	79.4
20.6	12600	15.1	112	4800	0.55	48800	0.34	60.0
10.4	15500	15.7	99	3000	0.75	46600	0.52	69.8
11.5	16000	10.7	76	913	0.73	30800	0.35	77.7
14.1	14100	7.8	63	374	0.63	21900	0.17	77.6
21.3	13900	7.7	54	296	0.60	19600	0.14	75.9
20.8	13100	7.3	53	210	0.57	18600	0.15	76.8
21.4	12900	8.1	57	263	0.57	19900	0.21	78.4
58.3	6030	3.7	26	62.0	0.26	10200	<0.1	55.3
60.5	6290	4.3	28	90.5	0.28	10400	<0.1	57.2
55.2	6750	4.7	34	126	0.31	11900	<0.1	58.8
37.8	9350	7.1	50	186	0.43	17800	0.13	67.7
43.7	9420	6.8	49	147	0.45	19400	0.14	65.0
32.2	12000	8.6	60	159	0.58	26300	0.14	72.4
35.5	9590	6.4	47	77.2	0.44	17400	<0.1	70.1
21.7	12600	8.9	61	113	0.59	24900	0.16	74.3
5.3	18000	19.5	96	319	0.91	43800	0.58	84.6
11.2	16200	13.5	81	206	0.78	35300	0.32	81.6
7.5	17700	11.7	75	116	0.81	28300	0.19	86.7
	18400	12.9	93	133	0.88	34200	0.28	86.1
6.8	17700	13.1	74	165	0.79	27900	0.25	85.9
7.1	17800	15.7	84	156	0.85	32900	0.37	86.4
7.6	18500	18.4	96	176	0.93	38300	0.49	84.4
4.2	21600	27.5	127	198	1.18	50500	0.79	80.5
4	21700	29.9	134	169	1.18	52600	0.77	78.9
5	21100	29.5	132	151	1.14	53300	0.72	77.1
5.1	21500	31.6	133	154	1.15	53800	0.69	78.4
3.8	21800	29.1	136	147	1.19	53200	0.64	77.0
4.2	21500	25.0	133	148	1.17	51700	0.63	77.4

Со	Cr	Cu	Fe	К	La	Li	Mg	Mn
mg/kg								
17.7	50.1	23.8	36100	8460	24.5	38.9	14100	3800
18.5	54.0	25.5	38400	9090	25.8	41.8	15000	3420
17.1	53.4	24.7	37100	9120	25.6	41.7	14800	2550
17.8	53.7	24.8	37600	9260	25.6	41.9	15000	2410
17.6	54.0	24.8	38500	9340	25.8	42.7	15000	2010
16.9	55.1	25.4	38200	9670	27.0	43.9	14800	1540
16.6	55.4	25.0	37800	9780	26.7	44.1	14500	1370
15.7	56.5	25.4	38500	10200	27.3	45.8	14800	853
14.9	56.2	25.2	37200	10200	27.1	45.6	14800	687
14.3	55.8	25.1	36700	10200	27.0	45.6	14600	665
14.2	55.8	24.7	37000	10500	27.1	46.5	14500	623
14.1	55.5	24.3	36700	10500	26.9	46.4	14300	556
14.2	56.2	24.8	36700	10700	27.3	47.6	14400	588
14.6	56.7	25.0	35400	10700	27.2	48.0	14200	484
14.4	57.2	25.1	35600	11000	27.5	49.1	14300	454
14.4	57.9	25.2	36300	11200	27.8	49.6	14400	452
15.0	57.9	25.3	36100	11200	27.7	49.7	14300	428
15.3	58.1	25.3	36100	11300	27.6	49.7	14400	416
15.0	58.4	32.4	36500	11500	27.6	50.3	14500	422
14.4	57.0	25.0	35500	11200	27.2	49.0	14200	405
14.8	57.6	25.5	35800	11300	26.9	48.9	14300	401
14.9	58.7	26.1	36000	11400	27.4	49.5	14300	396
15.3	58.1	25.3	35700	11400	27.4	49.3	14100	391
15.2	58.7	25.5	36000	11400	27.5	49.5	14200	385
14.3	58.2	24.6	35700	11200	26.9	48.5	14000	369
14.4	58.2	24.0	35800	11300	27.2	49.1	14000	378
15.7	45.4	30.2	35200	9380	31.2	37.4	13400	3070
16.4	48.2	31.2	37100	9820	33.3	40.1	13700	2600
13.8	49.0	30.1	33700	10300	33.9	41.4	13500	614
15.3	49.6	31.3	34900	10400	34.3	41.5	13700	596
14.7	49.4	31.2	35300	10400	34.2	41.5	13800	607
14.6	49.2	30.8	34600	10300	34.2	41.0	13600	559
14.9	49.8	30.0	34500	10400	34.0	41.1	13600	539
15.0	50.2	30.0	34700	10600	34.4	41.5	13700	536
14.8	50.1	30.0	34600	10500	34.6	41.5	13700	534
14.7	50.2	29.6	34600	10500	34.4	41.3	13800	538
14.2	47.0	28.4	32900	9800	32.7	39.1	13800	559
14.8	48.0	28.2	33600	10000	33.4	39.7	13900	556
14.0	45.6	25.9	32100	9410	31.2	37.7	13800	570
15.1	49.2	27.7	34300	10100	34.4	40.7	13500	504
15.2	49.5	27.8	34300	10100	34.1	40.6	13400	495
14.8	49.5	27.6	34400	10000	33.7	40.2	13400	486
15.0	49.6	27.3	34400	10100	34.2	40.8	13400	484
15.1	49.7	27.2	34500	10200	34.3	41.1	13500	498
14.6	49.8	27.4	34300	10200	34.4	41.0	13600	498
14.7	50.3	26.4	34100	10100	34.0	41.3	13400	474
14.4	50.9	26.3	34400	10200	34.7	42.0	13200	454

14.5	50.8	26.0	34000	10200	34.1	42.0	13100	461
13.9	50.9	26.1	34100	10100	34.4	41 7	13200	462
14 1	50.5	25.5	34000	10100	34.2	41.8	13000	457
14 1	51.0	25.5	34300	10300	35.0	42.5	13200	480
12 7	50.6	20.0	22700	10200	34.6	42.5	12000	460
12.7	50.0	30.9 2F 1	22000	10200	34.0 24.E	42.1	12100	409
15.0	50.8	25.1	22200	10200	54.5	42.5	12100	442
24.2	40.0		44400	7460	27.2	20.4	12500	12000
24.2	40.9	54.5	41100	7460	27.3	28.4	13500	12900
24.1	40.6	52.7	39300	/350	26.5	27.5	13300	14000
15.4	30.3	38.0	27700	5460	21.0	20.8	9370	5260
18.1	36.0	42.8	31600	6240	24.0	24.3	11000	/200
23.7	45.6	54.0	39200	//30	29.0	29.8	13/00	/040
23.5	42.7	47.2	37200	7260	27.5	28.9	13400	13900
22.1	44.9	52.6	38800	7680	28.4	29.5	13600	3080
20.4	43.5	47.0	35500	7170	28.1	29.1	13300	12100
7.9	29.4	25.5	20500	4610	28.9	23.1	7810	3120
10.3	34.1	25.8	26600	5910	32.1	27.9	9800	2380
13.8	52.3	38.6	33100	7080	31.0	31.3	14200	6110
16.1	79.3	34.0	36500	7900	38.2	41.1	18800	1860
16.4	89.5	29.3	34700	7410	38.7	40.6	20400	1310
16.3	91.2	27.8	33000	6930	37.3	38.2	20900	1240
14.7	69.6	31.3	30500	5830	33.4	31.0	18000	1420
9.6	39.1	38.1	24300	4530	25.5	20.7	16000	3610
13.7	47.8	46.8	34200	6300	29.7	28.5	13800	3100
12.9	42.2	30.8	30600	6280	33.4	30.9	11800	2580
9.5	33.4	22.4	26500	5330	33.0	27.7	9120	1860
8.7	30.4	19.7	24100	5190	33.0	27.2	8240	970
8.0	28.8	17.5	21800	4760	33.6	25.7	7560	799
7.5	31.1	20.3	21400	4690	34.0	25.4	7720	760
3.2	13.3	10.7	10300	1930	24.6	12.8	3340	357
3.3	13.3	8.8	10600	2080	25.8	13.4	3470	350
3.3	14.8	9.5	11100	2330	26.1	13.8	3810	361
4.9	23.3	18.1	15000	3270	29.8	18.3	5390	509
5.4	23.1	16.2	15100	3360	28.0	18.3	5450	495
6.4	28.3	18.2	18700	4390	31.3	22.6	6770	573
5.0	22.7	17.0	15400	3360	30.9	18.7	5380	470
7.1	31.4	24.1	21000	4570	31.8	23.9	7380	855
15.3	62.0	49.7	37300	6930	36.0	32.2	15800	3110
10.8	46.8	36.9	27900	6210	34.9	29.3	11600	1530
10.7	41.2	27.7	29300	6930	37.0	32.5	10600	998
11.7	45.5	31.0	30800	7140	36.6	33.8	11000	1670
11.9	41.4	32.4	31600	6470	37.0	33.9	10400	2540
11.6	45.2	36.8	29300	6540	36.9	32.8	10200	1400
12.6	49.9	42.4	30000	6880	35.6	33.5	10800	1620
15.5	61.4	53.4	35500	8470	35.1	38.1	13200	2540
15.4	58.9	48.8	35600	8660	34.5	38.5	13600	2730
15.6	55.2	45.3	36300	8470	33.4	37.7	13500	3390
15.2	55.3	45.3	37500	8470	33.9	38.1	13400	3360
14.8	55.1	44.7	37200	8650	33.8	38.7	13400	3030
14 7	55.2	43.5	35500	8450	33.7	38.4	13000	2650
÷/	55.5	.5.5	22200	5.50	55.7	50.7	10000	-050

Мо	Na	Ni	Р	Pb	S	Sc	Se	Si
mg/kg								
2.7	28900	36.1	790	66.1	2600	6.71	<10	<200
1.1	29700	38.6	821	65.8	2620	7.19	<10	<200
<1	29500	37.5	786	60.8	2560	7.08	<10	<200
<1	29800	37.9	801	61.0	2570	7.12	<10	<200
<1	29700	38.0	792	61.4	2460	7.16	<10	<200
<1	28000	38.6	786	62.3	2290	7.29	<10	<200
<1	25900	38.6	775	64.2	2150	7.31	<10	<200
<1	26800	39.2	793	66.4	2290	7.48	<10	<200
<1	27700	39.0	748	65.4	2630	7.43	<10	<200
<1	27200	38.4	739	65.8	2570	7.36	<10	<200
<1	27300	38.3	744	69.0	2610	7.36	<10	<200
<1	27700	38.1	748	69.2	2670	7.32	<10	<200
<1	27500	38.5	772	68.6	2430	7.40	<10	<200
<1	25000	39.1	673	67.1	2220	7.44	<10	<200
<1	25100	39.1	655	67.0	2290	7.53	<10	<200
<1	25500	39.8	662	69.2	2270	7.60	<10	<200
<1	24700	39.6	647	71.3	2170	7.60	<10	<200
<1	24300	39.9	650	70.4	2310	7.64	<10	<200
<1	24900	41.8	645	72.2	2520	7.66	<10	<200
<1	24700	39.2	618	70.6	2510	7.48	<10	<200
<1	24500	39.6	619	71.8	2610	7.55	<10	<200
<1	23500	40.8	614	77.4	2460	7.68	<10	<200
<1	22900	40.4	602	76.1	2450	7.61	<10	<200
<1	22600	40.6	598	76.0	2470	7.69	<10	<200
<1	21900	39.7	591	73.9	2440	7.61	<10	<200
<1	22000	39.8	584	70.1	2880	7.65	<10	<200
1.8	32300	32.6	1150	57.6	3320	6.56	<10	<200
1.0	29900	34.5	1080	59.4	3100	6.97	<10	<200
<1	26800	35.2	824	60.3	2990	7.10	<10	<200
<1	27400	35.5	860	61.0	3070	7.17	<10	<200
<1	28500	35.5	880	61.1	3170	7.13	<10	<200
<1	27100	35.3	842	60.6	3150	7.11	<10	<200
<1	25600	35.7	805	61.5	3400	7.21	<10	<200
1.0	26400	35.9	804	61.7	3590	7.28	<10	<200
1.1	26000	35.8	797	62.5	3510	7.24	<10	<200
1.6	26000	36.0	791	62.4	3660	7.25	<10	<200
1.6	24900	34.2	755	60.0	3590	6.76	<10	207
1.7	25900	35.1	760	61.1	3770	6.89	<10	219
2.0	24500	32.9	704	58.1	3970	6.56	<10	225
1.4	23200	35.7	759	63.5	3650	7.07	<10	241
1.5	22700	35.9	756	63.8	3680	7.13	<10	205
1.5	23000	36.0	757	64.5	3740	7.12	<10	211
1.5	23100	36.1	749	63.9	3730	7.15	<10	223
1.5	24000	36.1	749	64.2	3860	7.17	<10	237
1.4	23900	35.9	751	64.7	3760	7.20	<10	228
1.2	22500	36.1	733	63.2	3670	7.26	<10	229
1.0	20700	36.6	728	64.4	3690	7.36	<10	224

<1	19800	36.5	722	64.6	3340	7.35	<10	221
<1	19800	36.6	727	64.4	3360	7.37	<10	222
<1	19400	36.0	720	62.1	3480	7.32	<10	209
<1	19500	36.5	734	62.0	3230	7.47	<10	232
<1	19200	38.0	724	61.8	3040	7.34	<10	216
<1	19600	35.9	718	59.2	3150	7.39	<10	207
37.9	46600	32.0	1540	91.5	19300	4.36	<10	302
39.6	47800	31.0	1240	91.2	18400	4.23	<10	292
26.1	33900	23.5	816	68.5	12600	3.22	<10	285
31.8	37500	27.6	899	83.9	14100	3.79	<10	301
36.2	46800	34.6	1030	110	17500	4.74	<10	295
35.0	45100	32.5	1200	105	16700	4.43	<10	274
36.0	47000	35.1	925	113	17700	4.63	<10	278
17.7	40000	33.9	1240	106	14500	4.59	<10	264
3.2	18200	21.2	830	65.7	5320	3.42	<10	271
3.5	19800	27.9	789	47.6	7170	4.36	<10	265
3.6	33300	50.3	960	94.2	9630	4.87	<10	221
2.2	25300	94.8	751	63.0	6670	5.78	<10	227
2.3	20000	121	702	47.8	5120	5.63	<10	227
2.4	18800	130	701	46.0	4960	5.32	<10	228
3.3	20300	107	769	63.4	6870	4.55	<10	264
3.1	21500	32.3	1010	109	9180	3.79	<10	252
8.5	30600	36.5	948	123	13000	4.59	<10	250
4.1	23100	38.1	802	59.2	8050	4.96	<10	234
2.3	17300	25.6	755	37.4	5780	4.36	<10	249
2.1	13700	23.2	703	28.6	4690	4.25	<10	370
1.8	13300	22.0	728	25.0	4140	3.94	<10	401
2.2	13600	25.0	741	36.2	4160	3.93	<10	412
1.2	6470	10.3	579	22.5	1770	1.78	<10	561
1.3	6750	10.4	552	15.1	2060	1.89	<10	553
1.6	7800	11.3	579	16.9	2410	2.07	<10	568
2.1	11300	16.6	679	43.1	3380	2.80	<10	448
1.9	11200	17.1	641	39.5	3300	2.89	<10	462
2.1	14000	21.0	667	38.8	4180	3.63	<10	433
1.5	11200	16.4	683	41.6	3170	2.86	<10	480
1.7	15000	22.8	764	62.0	4410	3.79	<10	423
5.3	24500	78.2	946	161	10100	5.57	<10	343
4.3	20400	47.5	840	112	6690	5.04	<10	353
3.8	19200	30.1	827	60.4	6520	5.61	<10	335
4.1	22900	31.6	837	81.4	7310	5.69	<10	320
3.4	19300	30.3	818	102	6320	5.13	<10	349
3.5	20900	30.7	835	114	6140	5.24	<10	333
4.3	22800	33.2	874	135	6910	5.45	<10	337
7.4	29200	41.8	928	169	9330	6.43	<10	309
5.3	30700	40.7	918	141	9460	6.47	<10	308
5.7	29800	40.1	917	121	10000	6.39	<10	314
5.9	29300	40.6	919	121	10800	6.37	<10	316
5.9	28000	40.3	913	117	10500	6.46	<10	312
5.2	25500	39.6	900	112	9270	6.46	<10	315

Sr	Ti	V	Y	Zn	Zr	Hg
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
229	421	102	15.7	109	13.7	0.084
239	441	107	16.8	116	15.1	0.092
232	433	101	16.5	115	15.3	0.094
235	432	102	16.6	115	15.2	0.095
239	436	104	16.7	117	15.6	0.085
233	445	104	17.0	119	16.0	0.101
230	442	102	17.0	119	16.5	0.089
232	460	107	17.4	122	17.2	0.088
232	455	104	17.3	121	16.9	0.093
230	453	105	17.0	120	17.0	0.099
231	456	102	17.0	120	17.0	0.095
230	452	101	16.8	119	16.8	0.093
230	453	102	17.0	123	17.1	0.093
230	450	02 7	17.0	122	17.1	0.004
220	452	00.7 00.3	17.0	123	17.5	0.101
227	450	102	17.1	124	17.2	0.055
227	403	00.2	17.2	124	17.5	0.102
224	450	99.Z	17.2	120	17.5	0.104
224	459	99.8 00.1	17.2	120	17.5 17.5	0.103
224	408	99.1	17.5	135	17.5	0.0970
216	454	96.9	16.9	124	16.9	0.107
220	451	98.2	17.0	125	17.2	0.107
213	457	102	17.2	130	17.2	0.116
210	455	99.3	17.0	128	17.2	0.102
209	455	99.4	17.0	128	17.3	0.101
205	442	95.2	16.9	124	17.1	0.098
209	452	98.2	16.8	122	17.3	0.087
283	773	96.6	19.0	128	11.0	0.107
256	836	99.9	20.3	138	12.5	0.103
240	858	97.6	20.4	137	14.5	0.109
241	861	99.0	20.6	140	14.7	0.105
242	869	99.0	20.6	140	14.7	0.146
245	864	97.4	20.5	139	14.7	0.122
246	875	97.3	20.7	140	15.4	0.142
246	883	97.9	20.8	142	15.3	0.144
248	880	96.9	20.8	153	15.4	0.145
258	868	96.3	20.8	140	15.6	0.143
297	804	90.0	19.7	134	13.7	0.135
287	816	91.6	20.1	137	14.1	0.137
358	764	84.2	18.9	128	13.8	0.133
262	835	88.2	20.5	138	14.6	0.151
266	833	87.5	20.5	139	14.9	0.135
248	822	87.7	20.5	140	14.9	0.140
244	829	84.9	20.5	140	14.9	0.139
248	832	85.4	20.5	138	15.0	0.143
243	837	86.0	20.6	139	15.0	0.146
240	832	78.1	20.4	136	15.2	0.092
221	824	72.5	20.4	137	15.3	0.085

247	0.05	70.0	20.2	120	4 - 4	0.004
217	825	70.2	20.3	138	15.4	0.091
219	817	/1.5	20.4	153	15.1	0.091
213	813	70.2	20.2	135	15.1	0.090
223	844	71.4	20.7	134	15.6	0.088
220	830	70.3	20.4	141	15.3	0.086
214	835	67.1	20.3	130	15.3	0.081
363	617	161	16.9	193	12.2	0.331
375	618	166	16.3	197	12.1	0.333
262	498	122	12.4	150	9.2	0.255
304	560	139	14.4	175	10.8	0.313
405	675	166	17.7	231	13.5	0.427
416	631	146	17.1	235	12.3	0.407
432	664	144	17.4	291	13.2	0.496
365	661	133	17.6	271	13.2	0.459
157	613	55.3	16.4	120	13.3	0.291
150	849	63.6	18.0	119	17.1	0.191
278	780	98.9	18.5	211	16.2	0.393
165	975	79.3	20.1	161	25.4	0.245
127	984	63.2	19.8	129	26.4	0.166
124	930	61.1	19.3	124	24.7	0.157
200	762	67.6	18.8	135	19.9	0.267
539	654	61.7	16.1	160	18.8	0.307
426	715	112	17.9	216	17.2	0.497
191	856	82.4	19.0	142	18.2	0.246
125	817	58.3	18.4	104	18.0	0.132
105	835	49.1	17.8	87.3	18.3	0.082
99.3	763	43.7	17.8	76.6	17.0	0.069
106	740	44.2	17.7	86.5	16.5	0.170
50.9	419	19.9	12.6	46.9	9.8	0.095
53.3	430	19.7	12.4	42.4	9.5	0.054
61.2	443	21.6	13.1	44.6	9.6	0.059
92.0	531	33.8	15.2	73.4	11.8	0.242
95.3	511	34.4	14.6	73.3	11.4	0.298
123	602	41.9	16.1	80.7	13.1	0.136
87.1	548	34.2	15.5	72.7	12.6	0.190
124	658	52.2	17.3	104	14.9	0.280
249	861	135	21.0	252	19.1	0.676
183	823	86.7	19.6	165	16.8	0.482
144	1010	69.3	20.6	120	19.1	0.196
177	888	80.6	20.4	138	18.4	0.280
154	925	79.2	19.7	155	21.8	0.320
179	860	92.7	20.2	173	19.3	0.438
208	823	113	20.5	197	17.8	0.570
278	818	164	21.4	256	17.1	0.910
282	794	165	21 3	233	16 3	0.660
287	775	161	21.5	272	16.1	0 588
292	787	158	20.9	222	16.6	0.602
284	792	160	20.5	216	16.4	0 546
204	752	155	20.0	210	16 1	0.540
210	///	100	20.7	~ ~ ~ ~	TO'T	0.502

. NGU .

Norges geologiske undersøkelse Postboks 6315, Slüppen 7491 Trondheim, Norge

Besøksadresse Leiv Eirikssons vei 39 7040 Trondheim

Telefon 73 90 40 00 E-post ngu@ngu.no Nettside www.ngu.no